語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Reinforcement learning algorithmsana...
~
Belousov, Boris.
Reinforcement learning algorithmsanalysis and applications /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Reinforcement learning algorithmsedited by Boris Belousov ... [et al.].
其他題名:
analysis and applications /
其他作者:
Belousov, Boris.
出版者:
Cham :Springer International Publishing :2021.
面頁冊數:
viii, 206 p. :ill. (some col.), digital ;24 cm.
Contained By:
Springer Nature eBook
標題:
Reinforcement learning.
電子資源:
https://doi.org/10.1007/978-3-030-41188-6
ISBN:
9783030411886$q(electronic bk.)
Reinforcement learning algorithmsanalysis and applications /
Reinforcement learning algorithms
analysis and applications /[electronic resource] :edited by Boris Belousov ... [et al.]. - Cham :Springer International Publishing :2021. - viii, 206 p. :ill. (some col.), digital ;24 cm. - Studies in computational intelligence,v.8831860-949X ;. - Studies in computational intelligence ;v. 216..
Prediction Error and Actor-Critic Hypotheses in the Brain -- Reviewing on-policy / off-policy critic learning in the context of Temporal Differences and Residual Learning -- Reward Function Design in Reinforcement Learning -- Exploration Methods In Sparse Reward Environments -- A Survey on Constraining Policy Updates Using the KL Divergence -- Fisher Information Approximations in Policy Gradient Methods -- Benchmarking the Natural gradient in Policy Gradient Methods and Evolution Strategies -- Information-Loss-Bounded Policy Optimization -- Persistent Homology for Dimensionality Reduction -- Model-free Deep Reinforcement Learning - Algorithms and Applications -- Actor vs Critic -- Bring Color to Deep Q-Networks -- Distributed Methods for Reinforcement Learning -- Model-Based Reinforcement Learning -- Challenges of Model Predictive Control in a Black Box Environment -- Control as Inference?
This book reviews research developments in diverse areas of reinforcement learning such as model-free actor-critic methods, model-based learning and control, information geometry of policy searches, reward design, and exploration in biology and the behavioral sciences. Special emphasis is placed on advanced ideas, algorithms, methods, and applications. The contributed papers gathered here grew out of a lecture course on reinforcement learning held by Prof. Jan Peters in the winter semester 2018/2019 at Technische Universitat Darmstadt. The book is intended for reinforcement learning students and researchers with a firm grasp of linear algebra, statistics, and optimization. Nevertheless, all key concepts are introduced in each chapter, making the content self-contained and accessible to a broader audience.
ISBN: 9783030411886$q(electronic bk.)
Standard No.: 10.1007/978-3-030-41188-6doiSubjects--Topical Terms:
349131
Reinforcement learning.
LC Class. No.: Q325.6
Dewey Class. No.: 006.31
Reinforcement learning algorithmsanalysis and applications /
LDR
:02817nmm a2200337 a 4500
001
596483
003
DE-He213
005
20210102123722.0
006
m d
007
cr nn 008maaau
008
211013s2021 sz s 0 eng d
020
$a
9783030411886$q(electronic bk.)
020
$a
9783030411879$q(paper)
024
7
$a
10.1007/978-3-030-41188-6
$2
doi
035
$a
978-3-030-41188-6
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
Q325.6
072
7
$a
UYQ
$2
bicssc
072
7
$a
TEC009000
$2
bisacsh
072
7
$a
UYQ
$2
thema
082
0 4
$a
006.31
$2
23
090
$a
Q325.6
$b
.R367 2021
245
0 0
$a
Reinforcement learning algorithms
$h
[electronic resource] :
$b
analysis and applications /
$c
edited by Boris Belousov ... [et al.].
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2021.
300
$a
viii, 206 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
490
1
$a
Studies in computational intelligence,
$x
1860-949X ;
$v
v.883
505
0
$a
Prediction Error and Actor-Critic Hypotheses in the Brain -- Reviewing on-policy / off-policy critic learning in the context of Temporal Differences and Residual Learning -- Reward Function Design in Reinforcement Learning -- Exploration Methods In Sparse Reward Environments -- A Survey on Constraining Policy Updates Using the KL Divergence -- Fisher Information Approximations in Policy Gradient Methods -- Benchmarking the Natural gradient in Policy Gradient Methods and Evolution Strategies -- Information-Loss-Bounded Policy Optimization -- Persistent Homology for Dimensionality Reduction -- Model-free Deep Reinforcement Learning - Algorithms and Applications -- Actor vs Critic -- Bring Color to Deep Q-Networks -- Distributed Methods for Reinforcement Learning -- Model-Based Reinforcement Learning -- Challenges of Model Predictive Control in a Black Box Environment -- Control as Inference?
520
$a
This book reviews research developments in diverse areas of reinforcement learning such as model-free actor-critic methods, model-based learning and control, information geometry of policy searches, reward design, and exploration in biology and the behavioral sciences. Special emphasis is placed on advanced ideas, algorithms, methods, and applications. The contributed papers gathered here grew out of a lecture course on reinforcement learning held by Prof. Jan Peters in the winter semester 2018/2019 at Technische Universitat Darmstadt. The book is intended for reinforcement learning students and researchers with a firm grasp of linear algebra, statistics, and optimization. Nevertheless, all key concepts are introduced in each chapter, making the content self-contained and accessible to a broader audience.
650
0
$a
Reinforcement learning.
$3
349131
650
0
$a
Algorithms.
$3
184661
650
1 4
$a
Computational Intelligence.
$3
338479
650
2 4
$a
Artificial Intelligence.
$3
212515
700
1
$a
Belousov, Boris.
$3
889261
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer Nature eBook
830
0
$a
Studies in computational intelligence ;
$v
v. 216.
$3
380871
856
4 0
$u
https://doi.org/10.1007/978-3-030-41188-6
950
$a
Intelligent Technologies and Robotics (SpringerNature-42732)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000194181
電子館藏
1圖書
電子書
EB Q325.6 .R367 2021 2021
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
https://doi.org/10.1007/978-3-030-41188-6
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入