Language:
English
繁體中文
Help
圖資館首頁
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Advancing parametric optimizationon ...
~
Adelgren, Nathan.
Advancing parametric optimizationon multiparametric linear complementarity problems with parameters in general locations /
Record Type:
Electronic resources : Monograph/item
Title/Author:
Advancing parametric optimizationby Nathan Adelgren.
Reminder of title:
on multiparametric linear complementarity problems with parameters in general locations /
Author:
Adelgren, Nathan.
Published:
Cham :Springer International Publishing :2021.
Description:
xii, 113 p. :ill., digital ;24 cm.
Contained By:
Springer Nature eBook
Subject:
Mathematical optimization.
Online resource:
https://doi.org/10.1007/978-3-030-61821-6
ISBN:
9783030618216$q(electronic bk.)
Advancing parametric optimizationon multiparametric linear complementarity problems with parameters in general locations /
Adelgren, Nathan.
Advancing parametric optimization
on multiparametric linear complementarity problems with parameters in general locations /[electronic resource] :by Nathan Adelgren. - Cham :Springer International Publishing :2021. - xii, 113 p. :ill., digital ;24 cm. - SpringerBriefs in optimization,2190-8354. - SpringerBriefs in optimization..
1. Introduction -- 2. Background on mpLCP -- 3. Algebraic Properties of Invariancy Regions -- 4. Phase 2: Partitioning the Parameter Space -- 5. Phase 1: Determining an Initial Feasible Solution -- 6. Further Considerations -- 7. Assessment of Performance -- 8. Conclusion -- Appendix A. Tableaux for Example 2.1 -- Appendix B. Tableaux for Example 2.2 -- References.
The theory presented in this work merges many concepts from mathematical optimization and real algebraic geometry. When unknown or uncertain data in an optimization problem is replaced with parameters, one obtains a multi-parametric optimization problem whose optimal solution comes in the form of a function of the parameters.The theory and methodology presented in this work allows one to solve both Linear Programs and convex Quadratic Programs containing parameters in any location within the problem data as well as multi-objective optimization problems with any number of convex quadratic or linear objectives and linear constraints. Applications of these classes of problems are extremely widespread, ranging from business and economics to chemical and environmental engineering. Prior to this work, no solution procedure existed for these general classes of problems except for the recently proposed algorithms.
ISBN: 9783030618216$q(electronic bk.)
Standard No.: 10.1007/978-3-030-61821-6doiSubjects--Topical Terms:
183292
Mathematical optimization.
LC Class. No.: QA402.5 / .A345 2021
Dewey Class. No.: 519.6
Advancing parametric optimizationon multiparametric linear complementarity problems with parameters in general locations /
LDR
:02399nmm a2200337 a 4500
001
597231
003
DE-He213
005
20210629150616.0
006
m d
007
cr nn 008maaau
008
211019s2021 sz s 0 eng d
020
$a
9783030618216$q(electronic bk.)
020
$a
9783030618209$q(paper)
024
7
$a
10.1007/978-3-030-61821-6
$2
doi
035
$a
978-3-030-61821-6
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA402.5
$b
.A345 2021
072
7
$a
PBU
$2
bicssc
072
7
$a
MAT003000
$2
bisacsh
072
7
$a
PBU
$2
thema
082
0 4
$a
519.6
$2
23
090
$a
QA402.5
$b
.A228 2021
100
1
$a
Adelgren, Nathan.
$3
890380
245
1 0
$a
Advancing parametric optimization
$h
[electronic resource] :
$b
on multiparametric linear complementarity problems with parameters in general locations /
$c
by Nathan Adelgren.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2021.
300
$a
xii, 113 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
SpringerBriefs in optimization,
$x
2190-8354
505
0
$a
1. Introduction -- 2. Background on mpLCP -- 3. Algebraic Properties of Invariancy Regions -- 4. Phase 2: Partitioning the Parameter Space -- 5. Phase 1: Determining an Initial Feasible Solution -- 6. Further Considerations -- 7. Assessment of Performance -- 8. Conclusion -- Appendix A. Tableaux for Example 2.1 -- Appendix B. Tableaux for Example 2.2 -- References.
520
$a
The theory presented in this work merges many concepts from mathematical optimization and real algebraic geometry. When unknown or uncertain data in an optimization problem is replaced with parameters, one obtains a multi-parametric optimization problem whose optimal solution comes in the form of a function of the parameters.The theory and methodology presented in this work allows one to solve both Linear Programs and convex Quadratic Programs containing parameters in any location within the problem data as well as multi-objective optimization problems with any number of convex quadratic or linear objectives and linear constraints. Applications of these classes of problems are extremely widespread, ranging from business and economics to chemical and environmental engineering. Prior to this work, no solution procedure existed for these general classes of problems except for the recently proposed algorithms.
650
0
$a
Mathematical optimization.
$3
183292
650
0
$a
Geometry, Algebraic.
$3
190843
650
1 4
$a
Optimization.
$3
274084
650
2 4
$a
Algebraic Geometry.
$3
274807
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer Nature eBook
830
0
$a
SpringerBriefs in optimization.
$3
558249
856
4 0
$u
https://doi.org/10.1007/978-3-030-61821-6
950
$a
Mathematics and Statistics (SpringerNature-11649)
based on 0 review(s)
ALL
電子館藏
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
000000195961
電子館藏
1圖書
電子書
EB QA402.5 .A228 2021 2021
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Multimedia file
https://doi.org/10.1007/978-3-030-61821-6
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login