語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Unearthing the real process behind t...
~
Janssenswillen, Gert.
Unearthing the real process behind the event datathe case for increased process realism /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Unearthing the real process behind the event databy Gert Janssenswillen.
其他題名:
the case for increased process realism /
作者:
Janssenswillen, Gert.
出版者:
Cham :Springer International Publishing :2021.
面頁冊數:
xvi, 283 p. :ill., digital ;24 cm.
Contained By:
Springer Nature eBook
標題:
BusinessData processing.
電子資源:
https://doi.org/10.1007/978-3-030-70733-0
ISBN:
9783030707330$q(electronic bk.)
Unearthing the real process behind the event datathe case for increased process realism /
Janssenswillen, Gert.
Unearthing the real process behind the event data
the case for increased process realism /[electronic resource] :by Gert Janssenswillen. - Cham :Springer International Publishing :2021. - xvi, 283 p. :ill., digital ;24 cm. - Lecture notes in business information processing,4121865-1348 ;. - Lecture notes in business information processing ;96..
Part I Introduction -- 1 Process Realism -- 1.1 Introduction to Process Mining -- 1.1.1 Business Process Management -- 1.1.2 The emergence of process mining -- 1.1.3 Perspectives -- 1.1.4 Tools -- 1.1.5 Towards Evidence-based Business Process Management -- 1.2 The case for Process Realism -- 1.2.1 Motivation -- 1.2.2 Research objective -- 1.3 Methodology and Outline -- 1.3.1 Process Model Quality -- 1.3.2 Process Analytics -- Part II Process Model Quality -- 2 Introduction to Conformance Checking -- 2.1 Introduction to Process Mining -- 2.1.1 Preliminaries -- 2.1.2 Process -- 2.1.3 Event log -- 2.1.4 Model -- 2.2 Quality Dimensions -- 2.2.1 Fitness -- 2.2.2 Precision -- 2.2.3 Generalization -- 2.2.4 Simplicity -- 2.3 Quality Measures -- 2.3.1 Fitness -- 2.3.2 Precision -- 2.3.3 Generalization -- 2.4 Conclusion -- 2.5 Further Reading -- 3 Calculating the Number of Distinct Paths in a Block-Structured Model -- 3.1 Introduction -- 3.2 Formal Algorithm -- 3.2.1 Assumptions and used notations -- 3.2.2 Generic approach -- 3.2.3 Block Functions -- 3.2.4 Limitations -- 3.3 Implementation -- 3.3.1 Preliminaries -- 3.3.2 Algorithm -- 3.3.3 Extended Block Functions -- 3.3.4 Silent transitions and duplicate tasks -- 3.4 Performance -- 3.5 Conclusion and future work -- 3.6 Further Reading -- 4 Comparative Study of Quality Measures -- 4.1 Introduction -- 4.2 Problem Statement -- 4.3 Methodology -- 4.3.1 Generate systems -- 4.3.2 Calculate the number of paths -- 4.3.3 Simulate logs -- 4.3.4 Discover models -- 4.3.5 Measure quality -- 4.3.6 Statistical Analysis -- 4.4 Results -- 4.4.1 Feasibility -- 4.4.2 Validity -- 4.4.3 Sensitivity -- 4.5 Discussion -- 4.6 Conclusion -- 4.7 Further Reading -- 5 Reassessing the Quality Framework -- 5.1 Introduction -- 5.2 Exploratory versus confirmatory process discovery -- 5.2.1 Problem statement -- 5.3 Methodology -- 5.3.1 Generate systems -- 5.3.2 Simulate logs -- 5.3.3 Discover models -- 5.3.4 Measure log-quality -- 5.3.5 Measure system-quality -- 5.3.6 Statistical analysis -- 5.4 Results -- 5.4.1 Log versus system-perspective -- 5.4.2 Generalization -- 5.5 Discussion -- 5.6 Conclusion -- 5.7 Further Reading -- 6 Towards Mature Conformance Checking -- 6.1 Synthesis -- 6.1.1 Fitness -- 6.1.2 Precision -- 6.1.3 Generalization -- 6.2 Future research -- 6.2.1 System-fitness and system-precision -- 6.2.2 Improving the Experimental Setup -- Part III Process Analytics -- 7 Reproducible Process Analytics -- 7.1 Introduction -- 7.2 Problem Statement -- 7.3 Requirements Definition -- 7.3.1 Functionality requirements -- 7.3.2 Design Requirements -- 7.4 Design and Development of Artefact -- 7.4.1 Core packages -- 7.4.2 Supplementary packages -- 7.5 Demonstration of Artefact -- 7.5.1 Event data extraction -- 7.5.2 Data Processing -- 7.5.3 Mining and Analysis -- 7.6 Discussion -- 7.7 Conclusion -- 7.8 Further Reading -- 8 Student Trajectories in Higher Education -- 8.1 Learning analytics and process mining -- 8.2 Data Understanding -- 8.3 Followed versus prescribed trajectories -- 8.3.1 Root causes -- 8.3.2 Impact -- 8.4 Failure Patterns -- 8.4.1 Bags -- 8.4.2 High-level analysis -- 8.4.3 Low-level analysis -- 8.5 Understanding Trajectory Decisions -- 8.6 Discussion -- 8.7 Conclusion -- 8.8 Further Reading -- 9 Process-Oriented Analytics in Railway Systems -- 9.1 Introduction -- 9.2 Problem statement and related work -- 9.3 Methodology -- 9.3.1 Rerouting severity -- 9.3.2 Rerouting diversity -- 9.3.3 Discovering patterns -- 9.4 Results -- 9.4.1 Rerouting severity -- 9.4.2 Rerouting diversity -- 5 Discussion -- 9.6 Conclusions -- 9.7 Further Reading -- Part IV Conclusions -- 10 Conclusions and Recommendations for Future Research -- 10.1 Process Model Quality -- 10.1.1 Lessons Learned -- 10.1.2 Recommendations for Future Research -- 10.2 Process Analytics -- 10.2.1 Lessons Learned -- 10.2.2 Recommendations for Future Research -- Afterword -- A Additional Figures and Tables Chapter 4 -- B Function Index bupaR packages -- B.1 bupaR -- B.2 edeaR -- B.3 evendataR -- B.4 xesreadR -- B.5 processmapR -- B.6 processmonitR -- B.7 petrinetR -- B.8 ptR -- B.9 discoveR -- C Scripts Chapter 8 -- D Scripts Chapter 9 -- References.
This book is a revised version of the PhD dissertation written by the author at Hasselt University in Belgium.This dissertation introduces the concept of process realism. Process realism is approached from two perspectives in this dissertation. First, quality dimensions and measures for process discovery are analyzed on a large scale and compared with each other on the basis of empirical experiments. It is shown that there are important differences between the different quality measures in terms of feasibility, validity and sensitivity. Moreover, the role and meaning of the generalization dimension is unclear. Second, process realism is also tackled from a data point of view. By developing a transparent and extensible tool-set, a framework is offered to analyze process data from different perspectives. From both perspectives, recommendations are made for future research, and a call is made to give the process realism mindset a central place within process mining analyses. In 2020, the PhD dissertation won the "BPM Dissertation Award", granted to outstanding PhD theses in the field of Business Process Management.
ISBN: 9783030707330$q(electronic bk.)
Standard No.: 10.1007/978-3-030-70733-0doiSubjects--Topical Terms:
199085
Business
--Data processing.
LC Class. No.: HF5548.2 / .J35 2021
Dewey Class. No.: 658.054
Unearthing the real process behind the event datathe case for increased process realism /
LDR
:06432nmm a2200337 a 4500
001
597567
003
DE-He213
005
20210407143504.0
006
m d
007
cr nn 008maaau
008
211019s2021 sz s 0 eng d
020
$a
9783030707330$q(electronic bk.)
020
$a
9783030707323$q(paper)
024
7
$a
10.1007/978-3-030-70733-0
$2
doi
035
$a
978-3-030-70733-0
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
HF5548.2
$b
.J35 2021
072
7
$a
KJQ
$2
bicssc
072
7
$a
BUS083000
$2
bisacsh
072
7
$a
KJQ
$2
thema
082
0 4
$a
658.054
$2
23
090
$a
HF5548.2
$b
.J35 2021
100
1
$a
Janssenswillen, Gert.
$3
890927
245
1 0
$a
Unearthing the real process behind the event data
$h
[electronic resource] :
$b
the case for increased process realism /
$c
by Gert Janssenswillen.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2021.
300
$a
xvi, 283 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Lecture notes in business information processing,
$x
1865-1348 ;
$v
412
505
0
$a
Part I Introduction -- 1 Process Realism -- 1.1 Introduction to Process Mining -- 1.1.1 Business Process Management -- 1.1.2 The emergence of process mining -- 1.1.3 Perspectives -- 1.1.4 Tools -- 1.1.5 Towards Evidence-based Business Process Management -- 1.2 The case for Process Realism -- 1.2.1 Motivation -- 1.2.2 Research objective -- 1.3 Methodology and Outline -- 1.3.1 Process Model Quality -- 1.3.2 Process Analytics -- Part II Process Model Quality -- 2 Introduction to Conformance Checking -- 2.1 Introduction to Process Mining -- 2.1.1 Preliminaries -- 2.1.2 Process -- 2.1.3 Event log -- 2.1.4 Model -- 2.2 Quality Dimensions -- 2.2.1 Fitness -- 2.2.2 Precision -- 2.2.3 Generalization -- 2.2.4 Simplicity -- 2.3 Quality Measures -- 2.3.1 Fitness -- 2.3.2 Precision -- 2.3.3 Generalization -- 2.4 Conclusion -- 2.5 Further Reading -- 3 Calculating the Number of Distinct Paths in a Block-Structured Model -- 3.1 Introduction -- 3.2 Formal Algorithm -- 3.2.1 Assumptions and used notations -- 3.2.2 Generic approach -- 3.2.3 Block Functions -- 3.2.4 Limitations -- 3.3 Implementation -- 3.3.1 Preliminaries -- 3.3.2 Algorithm -- 3.3.3 Extended Block Functions -- 3.3.4 Silent transitions and duplicate tasks -- 3.4 Performance -- 3.5 Conclusion and future work -- 3.6 Further Reading -- 4 Comparative Study of Quality Measures -- 4.1 Introduction -- 4.2 Problem Statement -- 4.3 Methodology -- 4.3.1 Generate systems -- 4.3.2 Calculate the number of paths -- 4.3.3 Simulate logs -- 4.3.4 Discover models -- 4.3.5 Measure quality -- 4.3.6 Statistical Analysis -- 4.4 Results -- 4.4.1 Feasibility -- 4.4.2 Validity -- 4.4.3 Sensitivity -- 4.5 Discussion -- 4.6 Conclusion -- 4.7 Further Reading -- 5 Reassessing the Quality Framework -- 5.1 Introduction -- 5.2 Exploratory versus confirmatory process discovery -- 5.2.1 Problem statement -- 5.3 Methodology -- 5.3.1 Generate systems -- 5.3.2 Simulate logs -- 5.3.3 Discover models -- 5.3.4 Measure log-quality -- 5.3.5 Measure system-quality -- 5.3.6 Statistical analysis -- 5.4 Results -- 5.4.1 Log versus system-perspective -- 5.4.2 Generalization -- 5.5 Discussion -- 5.6 Conclusion -- 5.7 Further Reading -- 6 Towards Mature Conformance Checking -- 6.1 Synthesis -- 6.1.1 Fitness -- 6.1.2 Precision -- 6.1.3 Generalization -- 6.2 Future research -- 6.2.1 System-fitness and system-precision -- 6.2.2 Improving the Experimental Setup -- Part III Process Analytics -- 7 Reproducible Process Analytics -- 7.1 Introduction -- 7.2 Problem Statement -- 7.3 Requirements Definition -- 7.3.1 Functionality requirements -- 7.3.2 Design Requirements -- 7.4 Design and Development of Artefact -- 7.4.1 Core packages -- 7.4.2 Supplementary packages -- 7.5 Demonstration of Artefact -- 7.5.1 Event data extraction -- 7.5.2 Data Processing -- 7.5.3 Mining and Analysis -- 7.6 Discussion -- 7.7 Conclusion -- 7.8 Further Reading -- 8 Student Trajectories in Higher Education -- 8.1 Learning analytics and process mining -- 8.2 Data Understanding -- 8.3 Followed versus prescribed trajectories -- 8.3.1 Root causes -- 8.3.2 Impact -- 8.4 Failure Patterns -- 8.4.1 Bags -- 8.4.2 High-level analysis -- 8.4.3 Low-level analysis -- 8.5 Understanding Trajectory Decisions -- 8.6 Discussion -- 8.7 Conclusion -- 8.8 Further Reading -- 9 Process-Oriented Analytics in Railway Systems -- 9.1 Introduction -- 9.2 Problem statement and related work -- 9.3 Methodology -- 9.3.1 Rerouting severity -- 9.3.2 Rerouting diversity -- 9.3.3 Discovering patterns -- 9.4 Results -- 9.4.1 Rerouting severity -- 9.4.2 Rerouting diversity -- 5 Discussion -- 9.6 Conclusions -- 9.7 Further Reading -- Part IV Conclusions -- 10 Conclusions and Recommendations for Future Research -- 10.1 Process Model Quality -- 10.1.1 Lessons Learned -- 10.1.2 Recommendations for Future Research -- 10.2 Process Analytics -- 10.2.1 Lessons Learned -- 10.2.2 Recommendations for Future Research -- Afterword -- A Additional Figures and Tables Chapter 4 -- B Function Index bupaR packages -- B.1 bupaR -- B.2 edeaR -- B.3 evendataR -- B.4 xesreadR -- B.5 processmapR -- B.6 processmonitR -- B.7 petrinetR -- B.8 ptR -- B.9 discoveR -- C Scripts Chapter 8 -- D Scripts Chapter 9 -- References.
520
$a
This book is a revised version of the PhD dissertation written by the author at Hasselt University in Belgium.This dissertation introduces the concept of process realism. Process realism is approached from two perspectives in this dissertation. First, quality dimensions and measures for process discovery are analyzed on a large scale and compared with each other on the basis of empirical experiments. It is shown that there are important differences between the different quality measures in terms of feasibility, validity and sensitivity. Moreover, the role and meaning of the generalization dimension is unclear. Second, process realism is also tackled from a data point of view. By developing a transparent and extensible tool-set, a framework is offered to analyze process data from different perspectives. From both perspectives, recommendations are made for future research, and a call is made to give the process realism mindset a central place within process mining analyses. In 2020, the PhD dissertation won the "BPM Dissertation Award", granted to outstanding PhD theses in the field of Business Process Management.
650
0
$a
Business
$x
Data processing.
$3
199085
650
0
$a
Management information systems.
$3
199355
650
1 4
$a
Business Process Management.
$3
714086
650
2 4
$a
Computer Applications.
$3
273760
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer Nature eBook
830
0
$a
Lecture notes in business information processing ;
$v
96.
$3
559514
856
4 0
$u
https://doi.org/10.1007/978-3-030-70733-0
950
$a
Computer Science (SpringerNature-11645)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000196297
電子館藏
1圖書
電子書
EB HF5548.2 .J35 2021 2021
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
https://doi.org/10.1007/978-3-030-70733-0
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入