語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Machine learningtheoretical foundati...
~
Pandey, Manjusha.
Machine learningtheoretical foundations and practical applications /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Machine learningedited by Manjusha Pandey, Siddharth Swarup Rautaray.
其他題名:
theoretical foundations and practical applications /
其他作者:
Pandey, Manjusha.
出版者:
Singapore :Springer Singapore :2021.
面頁冊數:
xi, 172 p. :ill. (some col.), digital ;24 cm.
Contained By:
Springer Nature eBook
標題:
Machine learningCongresses.
電子資源:
https://doi.org/10.1007/978-981-33-6518-6
ISBN:
9789813365186$q(electronic bk.)
Machine learningtheoretical foundations and practical applications /
Machine learning
theoretical foundations and practical applications /[electronic resource] :edited by Manjusha Pandey, Siddharth Swarup Rautaray. - Singapore :Springer Singapore :2021. - xi, 172 p. :ill. (some col.), digital ;24 cm. - Studies in big data,v.872197-6503 ;. - Studies in big data ;v.1..
Chapter 1. What do RDMs capture in Brain Responses and Computational Models? -- Chapter 2. Challenges and solutions, in developing Convolutional Neural Networks and Long Short Term Memory networks, for industry problems -- Chapter 3. Speed, Cloth and Pose Invariant Gait recognition Based Person Identifification -- Chapter 4. Applications of Machine learning in industry 4.0 -- Chapter 5. Web Semantics and Knowledge Graph -- Chapter 6. Machine Learning based Wireless Sensor Networks -- Chapter 7. AI to Machine Learning:lifeless automation and Issues -- Chapter 8. Analysis of FDIs in Different Sectors of the Indian Economy -- Chapter 9. Customer Profiling & Retention using Recommendation system and Factor Identification to predict Customer Chur In Telecom Industry.
This edited book is a collection of chapters invited and presented by experts at 10th industry symposium held during 9-12 January 2020 in conjunction with 16th edition of ICDCIT. The book covers topics, like machine learning and its applications, statistical learning, neural network learning, knowledge acquisition and learning, knowledge intensive learning, machine learning and information retrieval, machine learning for web navigation and mining, learning through mobile data mining, text and multimedia mining through machine learning, distributed and parallel learning algorithms and applications, feature extraction and classification, theories and models for plausible reasoning, computational learning theory, cognitive modelling and hybrid learning algorithms.
ISBN: 9789813365186$q(electronic bk.)
Standard No.: 10.1007/978-981-33-6518-6doiSubjects--Topical Terms:
384498
Machine learning
--Congresses.
LC Class. No.: Q325.5 / .M334 2021
Dewey Class. No.: 006.31
Machine learningtheoretical foundations and practical applications /
LDR
:02659nmm a2200337 a 4500
001
597900
003
DE-He213
005
20210729113829.0
006
m d
007
cr nn 008maaau
008
211019s2021 si s 0 eng d
020
$a
9789813365186$q(electronic bk.)
020
$a
9789813365179$q(paper)
024
7
$a
10.1007/978-981-33-6518-6
$2
doi
035
$a
978-981-33-6518-6
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
Q325.5
$b
.M334 2021
072
7
$a
UYQ
$2
bicssc
072
7
$a
TEC009000
$2
bisacsh
072
7
$a
UYQ
$2
thema
082
0 4
$a
006.31
$2
23
090
$a
Q325.5
$b
.M149 2021
245
0 0
$a
Machine learning
$h
[electronic resource] :
$b
theoretical foundations and practical applications /
$c
edited by Manjusha Pandey, Siddharth Swarup Rautaray.
260
$a
Singapore :
$b
Springer Singapore :
$b
Imprint: Springer,
$c
2021.
300
$a
xi, 172 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
490
1
$a
Studies in big data,
$x
2197-6503 ;
$v
v.87
505
0
$a
Chapter 1. What do RDMs capture in Brain Responses and Computational Models? -- Chapter 2. Challenges and solutions, in developing Convolutional Neural Networks and Long Short Term Memory networks, for industry problems -- Chapter 3. Speed, Cloth and Pose Invariant Gait recognition Based Person Identifification -- Chapter 4. Applications of Machine learning in industry 4.0 -- Chapter 5. Web Semantics and Knowledge Graph -- Chapter 6. Machine Learning based Wireless Sensor Networks -- Chapter 7. AI to Machine Learning:lifeless automation and Issues -- Chapter 8. Analysis of FDIs in Different Sectors of the Indian Economy -- Chapter 9. Customer Profiling & Retention using Recommendation system and Factor Identification to predict Customer Chur In Telecom Industry.
520
$a
This edited book is a collection of chapters invited and presented by experts at 10th industry symposium held during 9-12 January 2020 in conjunction with 16th edition of ICDCIT. The book covers topics, like machine learning and its applications, statistical learning, neural network learning, knowledge acquisition and learning, knowledge intensive learning, machine learning and information retrieval, machine learning for web navigation and mining, learning through mobile data mining, text and multimedia mining through machine learning, distributed and parallel learning algorithms and applications, feature extraction and classification, theories and models for plausible reasoning, computational learning theory, cognitive modelling and hybrid learning algorithms.
650
0
$a
Machine learning
$v
Congresses.
$3
384498
650
1 4
$a
Computational Intelligence.
$3
338479
650
2 4
$a
Machine Learning.
$3
833608
650
2 4
$a
Communications Engineering, Networks.
$3
273745
700
1
$a
Pandey, Manjusha.
$3
890208
700
1
$a
Rautaray, Siddharth Swarup.
$3
863623
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer Nature eBook
830
0
$a
Studies in big data ;
$v
v.1.
$3
675357
856
4 0
$u
https://doi.org/10.1007/978-981-33-6518-6
950
$a
Intelligent Technologies and Robotics (SpringerNature-42732)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000196630
電子館藏
1圖書
電子書
EB Q325.5 .M149 2021 2021
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
https://doi.org/10.1007/978-981-33-6518-6
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入