Language:
English
繁體中文
Help
圖資館首頁
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Introduction to geometrically nonlin...
~
Baitsch, Matthias.
Introduction to geometrically nonlinear continuum dislocation theoryFE implementation and application on subgrain formation in cubic single crystals under large strains /
Record Type:
Electronic resources : Monograph/item
Title/Author:
Introduction to geometrically nonlinear continuum dislocation theoryby Christian B. Silbermann, Matthias Baitsch, Jorn Ihlemann.
Reminder of title:
FE implementation and application on subgrain formation in cubic single crystals under large strains /
Author:
Silbermann, Christian B.
other author:
Baitsch, Matthias.
Published:
Cham :Springer International Publishing :2021.
Description:
xiii, 94 p. :ill., digital ;24 cm.
Contained By:
Springer Nature eBook
Subject:
CrystalsPlastic properties.
Online resource:
https://doi.org/10.1007/978-3-030-63696-8
ISBN:
9783030636968$q(electronic bk.)
Introduction to geometrically nonlinear continuum dislocation theoryFE implementation and application on subgrain formation in cubic single crystals under large strains /
Silbermann, Christian B.
Introduction to geometrically nonlinear continuum dislocation theory
FE implementation and application on subgrain formation in cubic single crystals under large strains /[electronic resource] :by Christian B. Silbermann, Matthias Baitsch, Jorn Ihlemann. - Cham :Springer International Publishing :2021. - xiii, 94 p. :ill., digital ;24 cm. - SpringerBriefs in applied sciences and technology. - SpringerBriefs in applied sciences and technology..
Introduction -- Nonlinear kinematics of a continuously dislocated crystal -- Crystal kinetics and -thermodynamics -- Special cases included in the theory -- Geometrical linearization of the theory -- Variational formulation of the theory -- Numerical solution with the finite element method -- FE simulation results -- Possibilities of experimental validation -- Conclusions and Discussion -- Elements of Tensor Calculus and Tensor Analysis -- Solutions and algorithms for nonlinear plasticity.
This book provides an introduction to geometrically non-linear single crystal plasticity with continuously distributed dislocations. A symbolic tensor notation is used to focus on the physics. The book also shows the implementation of the theory into the finite element method. Moreover, a simple simulation example demonstrates the capability of the theory to describe the emergence of planar lattice defects (subgrain boundaries) and introduces characteristics of pattern forming systems. Numerical challenges involved in the localization phenomena are discussed in detail.
ISBN: 9783030636968$q(electronic bk.)
Standard No.: 10.1007/978-3-030-63696-8doiSubjects--Topical Terms:
666649
Crystals
--Plastic properties.
LC Class. No.: QD933
Dewey Class. No.: 548.842
Introduction to geometrically nonlinear continuum dislocation theoryFE implementation and application on subgrain formation in cubic single crystals under large strains /
LDR
:02296nmm a2200349 a 4500
001
600156
003
DE-He213
005
20210421115751.0
006
m d
007
cr nn 008maaau
008
211104s2021 sz s 0 eng d
020
$a
9783030636968$q(electronic bk.)
020
$a
9783030636951$q(paper)
024
7
$a
10.1007/978-3-030-63696-8
$2
doi
035
$a
978-3-030-63696-8
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QD933
072
7
$a
TGM
$2
bicssc
072
7
$a
TEC021000
$2
bisacsh
072
7
$a
TGM
$2
thema
072
7
$a
TNC
$2
thema
082
0 4
$a
548.842
$2
23
090
$a
QD933
$b
.S582 2021
100
1
$a
Silbermann, Christian B.
$3
894647
245
1 0
$a
Introduction to geometrically nonlinear continuum dislocation theory
$h
[electronic resource] :
$b
FE implementation and application on subgrain formation in cubic single crystals under large strains /
$c
by Christian B. Silbermann, Matthias Baitsch, Jorn Ihlemann.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2021.
300
$a
xiii, 94 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
SpringerBriefs in applied sciences and technology
505
0
$a
Introduction -- Nonlinear kinematics of a continuously dislocated crystal -- Crystal kinetics and -thermodynamics -- Special cases included in the theory -- Geometrical linearization of the theory -- Variational formulation of the theory -- Numerical solution with the finite element method -- FE simulation results -- Possibilities of experimental validation -- Conclusions and Discussion -- Elements of Tensor Calculus and Tensor Analysis -- Solutions and algorithms for nonlinear plasticity.
520
$a
This book provides an introduction to geometrically non-linear single crystal plasticity with continuously distributed dislocations. A symbolic tensor notation is used to focus on the physics. The book also shows the implementation of the theory into the finite element method. Moreover, a simple simulation example demonstrates the capability of the theory to describe the emergence of planar lattice defects (subgrain boundaries) and introduces characteristics of pattern forming systems. Numerical challenges involved in the localization phenomena are discussed in detail.
650
0
$a
Crystals
$x
Plastic properties.
$3
666649
650
0
$a
Continuum mechanics.
$3
190274
650
1 4
$a
Structural Materials.
$3
274623
650
2 4
$a
Classical and Continuum Physics.
$3
771188
700
1
$a
Baitsch, Matthias.
$3
894648
700
1
$a
Ihlemann, Jorn.
$3
894649
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer Nature eBook
830
0
$a
SpringerBriefs in applied sciences and technology.
$3
557662
856
4 0
$u
https://doi.org/10.1007/978-3-030-63696-8
950
$a
Chemistry and Materials Science (SpringerNature-11644)
based on 0 review(s)
ALL
電子館藏
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
000000198690
電子館藏
1圖書
電子書
EB QD933 .S582 2021 2021
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Multimedia file
https://doi.org/10.1007/978-3-030-63696-8
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login