語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Personalized privacy protection in b...
~
Qu, Youyang.
Personalized privacy protection in big data
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Personalized privacy protection in big databy Youyang Qu ... [et al.].
其他作者:
Qu, Youyang.
出版者:
Singapore :Springer Singapore :2021.
面頁冊數:
xi, 139 p. :ill., digital ;24 cm.
Contained By:
Springer Nature eBook
標題:
Big dataSecurity measures.
電子資源:
https://doi.org/10.1007/978-981-16-3750-6
ISBN:
9789811637506$q(electronic bk.)
Personalized privacy protection in big data
Personalized privacy protection in big data
[electronic resource] /by Youyang Qu ... [et al.]. - Singapore :Springer Singapore :2021. - xi, 139 p. :ill., digital ;24 cm. - Data analytics,2520-1859. - Data analytics..
Chapter 1: Introduction -- Chapter 2: Current Methods of Privacy Protection -- Chapter 3: Privacy Attacks -- Chapter 4: Personalize Privacy Defense -- Chapter 5: Future Directions -- Chapter6: Summary and Outlook.
This book presents the data privacy protection which has been extensively applied in our current era of big data. However, research into big data privacy is still in its infancy. Given the fact that existing protection methods can result in low data utility and unbalanced trade-offs, personalized privacy protection has become a rapidly expanding research topic. In this book, the authors explore emerging threats and existing privacy protection methods, and discuss in detail both the advantages and disadvantages of personalized privacy protection. Traditional methods, such as differential privacy and cryptography, are discussed using a comparative and intersectional approach, and are contrasted with emerging methods like federated learning and generative adversarial nets. The advances discussed cover various applications, e.g. cyber-physical systems, social networks, and location-based services. Given its scope, the book is of interest to scientists, policy-makers, researchers, and postgraduates alike.
ISBN: 9789811637506$q(electronic bk.)
Standard No.: 10.1007/978-981-16-3750-6doiSubjects--Topical Terms:
807728
Big data
--Security measures.
LC Class. No.: QA76.9.A25
Dewey Class. No.: 005.7
Personalized privacy protection in big data
LDR
:02239nmm a2200337 a 4500
001
605284
003
DE-He213
005
20210723205555.0
006
m d
007
cr nn 008maaau
008
211201s2021 si s 0 eng d
020
$a
9789811637506$q(electronic bk.)
020
$a
9789811637490$q(paper)
024
7
$a
10.1007/978-981-16-3750-6
$2
doi
035
$a
978-981-16-3750-6
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA76.9.A25
072
7
$a
URD
$2
bicssc
072
7
$a
COM060040
$2
bisacsh
072
7
$a
URD
$2
thema
082
0 4
$a
005.7
$2
23
090
$a
QA76.9.A25
$b
P467 2021
245
0 0
$a
Personalized privacy protection in big data
$h
[electronic resource] /
$c
by Youyang Qu ... [et al.].
260
$a
Singapore :
$b
Springer Singapore :
$b
Imprint: Springer,
$c
2021.
300
$a
xi, 139 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Data analytics,
$x
2520-1859
505
0
$a
Chapter 1: Introduction -- Chapter 2: Current Methods of Privacy Protection -- Chapter 3: Privacy Attacks -- Chapter 4: Personalize Privacy Defense -- Chapter 5: Future Directions -- Chapter6: Summary and Outlook.
520
$a
This book presents the data privacy protection which has been extensively applied in our current era of big data. However, research into big data privacy is still in its infancy. Given the fact that existing protection methods can result in low data utility and unbalanced trade-offs, personalized privacy protection has become a rapidly expanding research topic. In this book, the authors explore emerging threats and existing privacy protection methods, and discuss in detail both the advantages and disadvantages of personalized privacy protection. Traditional methods, such as differential privacy and cryptography, are discussed using a comparative and intersectional approach, and are contrasted with emerging methods like federated learning and generative adversarial nets. The advances discussed cover various applications, e.g. cyber-physical systems, social networks, and location-based services. Given its scope, the book is of interest to scientists, policy-makers, researchers, and postgraduates alike.
650
0
$a
Big data
$x
Security measures.
$3
807728
650
1 4
$a
Privacy.
$3
268519
650
2 4
$a
Statistics, general.
$3
275684
650
2 4
$a
Data Mining and Knowledge Discovery.
$3
275288
650
2 4
$a
Data Structures and Information Theory.
$3
825714
650
2 4
$a
Artificial Intelligence.
$3
212515
650
2 4
$a
Coding and Information Theory.
$3
273763
700
1
$a
Qu, Youyang.
$3
901356
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer Nature eBook
830
0
$a
Data analytics.
$3
785233
856
4 0
$u
https://doi.org/10.1007/978-981-16-3750-6
950
$a
Computer Science (SpringerNature-11645)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000203331
電子館藏
1圖書
電子書
EB QA76.9.A25 P467 2021 2021
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
https://doi.org/10.1007/978-981-16-3750-6
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入