Language:
English
繁體中文
Help
圖資館首頁
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Random walk, Brownian motion, and Ma...
~
Bhattacharya, Rabi.
Random walk, Brownian motion, and Martingales
Record Type:
Electronic resources : Monograph/item
Title/Author:
Random walk, Brownian motion, and Martingalesby Rabi Bhattacharya, Edward C. Waymire.
Author:
Bhattacharya, Rabi.
other author:
Waymire, Edward C.
Published:
Cham :Springer International Publishing :2021.
Description:
xv, 396 p. :ill., digital ;25 cm.
Contained By:
Springer Nature eBook
Subject:
Random walks (Mathematics)
Online resource:
https://doi.org/10.1007/978-3-030-78939-8
ISBN:
9783030789398$q(electronic bk.)
Random walk, Brownian motion, and Martingales
Bhattacharya, Rabi.
Random walk, Brownian motion, and Martingales
[electronic resource] /by Rabi Bhattacharya, Edward C. Waymire. - Cham :Springer International Publishing :2021. - xv, 396 p. :ill., digital ;25 cm. - Graduate texts in mathematics,2922197-5612 ;. - Graduate texts in mathematics ;129..
1. What is a Stochastic Process? -- 2. The Simple Random Walk I: Associated Boundary Value Distributions, Transience and Recurrence -- 3. The Simple Random Walk II: First Passage Times -- 4. Multidimensional Random Walk -- 5. The Poisson Process, Compound Poisson Process, and Poisson Random Field -- 6. The Kolmogorov-Chentsov Theorem and Sample Path Regularity -- 7. Random Walk, Brownian Motion and the Strong Markov Property -- 8. Coupling Methods for Markov Chains and the Renewal Theorem for Lattice Distributions -- 9. Bienyame-Galton-Watson Simple Branching Process and Extinction -- 10. Martingales: Definitions and Examples -- 11. Optional Stopping of (Sub)Martingales -- 12. The Upcrossings Inequality and (Sub)Martingale Convergence -- 13 -- Continuous Parameter Martingales -- 14. Growth of Supercritical Bienyame-Galton-Watson Simple Branching Processes -- 15. Stochastic Calculus for Point Processes and a Martingale Characterization of the Poisson Process -- 16. First Passage Time Distributions for Brownian Motion with Drift and a Local Limit Theorem -- 17. The Functional Central Limit Theorem (FCLT) -- 18. ArcSine Law Asymptotics -- 19. Brownian Motion on the Half-Line: Absorption and Reflection -- 20. The Brownian Bridge -- 21. Special Topic: Branching Random Walk, Polymers and Multiplicative Cascades -- 22. Special Topic: Bienyame-Galton-Watson Simple Branching Process and Excursions -- 23. Special Topic: The Geometric Random Walk and the Binomial Tree Model of Mathematical Finance -- 24. Special Topic: Optimal Stopping Rules -- 25. Special Topic: A Comprehensive Renewal Theory for General Random Walks -- 26. Special Topic: Ruin Problems in Insurance -- 27. Special Topic: Fractional Brownian Motion and/or Trends: The Hurst Effect -- 28. Special Topic: Incompressible Navier-Stokes Equations and the LeJan-Sznitman Cascade -- References -- Related Textbooks and Monographs -- Symbol Definition List -- Name Index -- Index.
This textbook offers an approachable introduction to stochastic processes that explores the four pillars of random walk, branching processes, Brownian motion, and martingales. Building from simple examples, the authors focus on developing context and intuition before formalizing the theory of each topic. This inviting approach illuminates the key ideas and computations in the proofs, forming an ideal basis for further study. Consisting of many short chapters, the book begins with a comprehensive account of the simple random walk in one dimension. From here, different paths may be chosen according to interest. Themes span Poisson processes, branching processes, the Kolmogorov-Chentsov theorem, martingales, renewal theory, and Brownian motion. Special topics follow, showcasing a selection of important contemporary applications, including mathematical finance, optimal stopping, ruin theory, branching random walk, and equations of fluids. Engaging exercises accompany the theory throughout. Random Walk, Brownian Motion, and Martingales is an ideal introduction to the rigorous study of stochastic processes. Students and instructors alike will appreciate the accessible, example-driven approach. A single, graduate-level course in probability is assumed.
ISBN: 9783030789398$q(electronic bk.)
Standard No.: 10.1007/978-3-030-78939-8doiSubjects--Topical Terms:
183715
Random walks (Mathematics)
LC Class. No.: QA274.73 / .B53 2021
Dewey Class. No.: 519.23
Random walk, Brownian motion, and Martingales
LDR
:04311nmm a2200349 a 4500
001
609628
003
DE-He213
005
20210920221510.0
006
m d
007
cr nn 008maaau
008
220222s2021 sz s 0 eng d
020
$a
9783030789398$q(electronic bk.)
020
$a
9783030789374$q(paper)
024
7
$a
10.1007/978-3-030-78939-8
$2
doi
035
$a
978-3-030-78939-8
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA274.73
$b
.B53 2021
072
7
$a
PBT
$2
bicssc
072
7
$a
MAT029000
$2
bisacsh
072
7
$a
PBT
$2
thema
072
7
$a
PBWL
$2
thema
082
0 4
$a
519.23
$2
23
090
$a
QA274.73
$b
.B575 2021
100
1
$a
Bhattacharya, Rabi.
$3
322890
245
1 0
$a
Random walk, Brownian motion, and Martingales
$h
[electronic resource] /
$c
by Rabi Bhattacharya, Edward C. Waymire.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2021.
300
$a
xv, 396 p. :
$b
ill., digital ;
$c
25 cm.
490
1
$a
Graduate texts in mathematics,
$x
2197-5612 ;
$v
292
505
0
$a
1. What is a Stochastic Process? -- 2. The Simple Random Walk I: Associated Boundary Value Distributions, Transience and Recurrence -- 3. The Simple Random Walk II: First Passage Times -- 4. Multidimensional Random Walk -- 5. The Poisson Process, Compound Poisson Process, and Poisson Random Field -- 6. The Kolmogorov-Chentsov Theorem and Sample Path Regularity -- 7. Random Walk, Brownian Motion and the Strong Markov Property -- 8. Coupling Methods for Markov Chains and the Renewal Theorem for Lattice Distributions -- 9. Bienyame-Galton-Watson Simple Branching Process and Extinction -- 10. Martingales: Definitions and Examples -- 11. Optional Stopping of (Sub)Martingales -- 12. The Upcrossings Inequality and (Sub)Martingale Convergence -- 13 -- Continuous Parameter Martingales -- 14. Growth of Supercritical Bienyame-Galton-Watson Simple Branching Processes -- 15. Stochastic Calculus for Point Processes and a Martingale Characterization of the Poisson Process -- 16. First Passage Time Distributions for Brownian Motion with Drift and a Local Limit Theorem -- 17. The Functional Central Limit Theorem (FCLT) -- 18. ArcSine Law Asymptotics -- 19. Brownian Motion on the Half-Line: Absorption and Reflection -- 20. The Brownian Bridge -- 21. Special Topic: Branching Random Walk, Polymers and Multiplicative Cascades -- 22. Special Topic: Bienyame-Galton-Watson Simple Branching Process and Excursions -- 23. Special Topic: The Geometric Random Walk and the Binomial Tree Model of Mathematical Finance -- 24. Special Topic: Optimal Stopping Rules -- 25. Special Topic: A Comprehensive Renewal Theory for General Random Walks -- 26. Special Topic: Ruin Problems in Insurance -- 27. Special Topic: Fractional Brownian Motion and/or Trends: The Hurst Effect -- 28. Special Topic: Incompressible Navier-Stokes Equations and the LeJan-Sznitman Cascade -- References -- Related Textbooks and Monographs -- Symbol Definition List -- Name Index -- Index.
520
$a
This textbook offers an approachable introduction to stochastic processes that explores the four pillars of random walk, branching processes, Brownian motion, and martingales. Building from simple examples, the authors focus on developing context and intuition before formalizing the theory of each topic. This inviting approach illuminates the key ideas and computations in the proofs, forming an ideal basis for further study. Consisting of many short chapters, the book begins with a comprehensive account of the simple random walk in one dimension. From here, different paths may be chosen according to interest. Themes span Poisson processes, branching processes, the Kolmogorov-Chentsov theorem, martingales, renewal theory, and Brownian motion. Special topics follow, showcasing a selection of important contemporary applications, including mathematical finance, optimal stopping, ruin theory, branching random walk, and equations of fluids. Engaging exercises accompany the theory throughout. Random Walk, Brownian Motion, and Martingales is an ideal introduction to the rigorous study of stochastic processes. Students and instructors alike will appreciate the accessible, example-driven approach. A single, graduate-level course in probability is assumed.
650
0
$a
Random walks (Mathematics)
$3
183715
650
0
$a
Brownian motion processes.
$3
183837
650
0
$a
Martingales (Mathematics)
$3
182691
650
1 4
$a
Probability Theory and Stochastic Processes.
$3
274061
650
2 4
$a
Statistics and Computing/Statistics Programs.
$3
275710
700
1
$a
Waymire, Edward C.
$3
245505
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer Nature eBook
830
0
$a
Graduate texts in mathematics ;
$v
129.
$3
436082
856
4 0
$u
https://doi.org/10.1007/978-3-030-78939-8
950
$a
Mathematics and Statistics (SpringerNature-11649)
based on 0 review(s)
ALL
電子館藏
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
000000206209
電子館藏
1圖書
電子書
EB QA274.73 .B575 2021 2021
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Multimedia file
https://doi.org/10.1007/978-3-030-78939-8
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login