Language:
English
繁體中文
Help
圖資館首頁
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Non-Euclidean Laguerre geometry and ...
~
Bobenko, Alexander I.
Non-Euclidean Laguerre geometry and incircular nets
Record Type:
Electronic resources : Monograph/item
Title/Author:
Non-Euclidean Laguerre geometry and incircular netsby Alexander I. Bobenko ...[et al.].
other author:
Bobenko, Alexander I.
Published:
Cham :Springer International Publishing :2021.
Description:
x, 137 p. :ill. (chiefly col.), digital ;24 cm.
Contained By:
Springer Nature eBook
Subject:
Laguerre geometry.
Online resource:
https://doi.org/10.1007/978-3-030-81847-0
ISBN:
9783030818470$q(electronic bk.)
Non-Euclidean Laguerre geometry and incircular nets
Non-Euclidean Laguerre geometry and incircular nets
[electronic resource] /by Alexander I. Bobenko ...[et al.]. - Cham :Springer International Publishing :2021. - x, 137 p. :ill. (chiefly col.), digital ;24 cm. - SpringerBriefs in mathematics,2191-8201. - SpringerBriefs in mathematics..
Introduction -- Two-dimensional non-Euclidean Laguerre geometry -- Quadrics in projective space -- Cayley-Klein spaces -- Central projection of quadrics and Mobius geometry -- Non-Euclidean Laguerre geometry -- Lie geometry -- Checkerboard incircular nets -- Euclidean cases -- Generalized signed inversive distance.
This textbook is a comprehensive and yet accessible introduction to non-Euclidean Laguerre geometry, for which there exists no previous systematic presentation in the literature. Moreover, we present new results by demonstrating all essential features of Laguerre geometry on the example of checkerboard incircular nets. Classical (Euclidean) Laguerre geometry studies oriented hyperplanes, oriented hyperspheres, and their oriented contact in Euclidean space. We describe how this can be generalized to arbitrary Cayley-Klein spaces, in particular hyperbolic and elliptic space, and study the corresponding groups of Laguerre transformations. We give an introduction to Lie geometry and describe how these Laguerre geometries can be obtained as subgeometries. As an application of two-dimensional Lie and Laguerre geometry we study the properties of checkerboard incircular nets.
ISBN: 9783030818470$q(electronic bk.)
Standard No.: 10.1007/978-3-030-81847-0doiSubjects--Topical Terms:
908946
Laguerre geometry.
LC Class. No.: QA551
Dewey Class. No.: 516.3
Non-Euclidean Laguerre geometry and incircular nets
LDR
:02249nmm a2200337 a 4500
001
610762
003
DE-He213
005
20211029173224.0
006
m d
007
cr nn 008maaau
008
220330s2021 sz s 0 eng d
020
$a
9783030818470$q(electronic bk.)
020
$a
9783030818463$q(paper)
024
7
$a
10.1007/978-3-030-81847-0
$2
doi
035
$a
978-3-030-81847-0
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA551
072
7
$a
PBM
$2
bicssc
072
7
$a
MAT012000
$2
bisacsh
072
7
$a
PBM
$2
thema
082
0 4
$a
516.3
$2
23
090
$a
QA551
$b
.N812 2021
245
0 0
$a
Non-Euclidean Laguerre geometry and incircular nets
$h
[electronic resource] /
$c
by Alexander I. Bobenko ...[et al.].
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2021.
300
$a
x, 137 p. :
$b
ill. (chiefly col.), digital ;
$c
24 cm.
490
1
$a
SpringerBriefs in mathematics,
$x
2191-8201
505
0
$a
Introduction -- Two-dimensional non-Euclidean Laguerre geometry -- Quadrics in projective space -- Cayley-Klein spaces -- Central projection of quadrics and Mobius geometry -- Non-Euclidean Laguerre geometry -- Lie geometry -- Checkerboard incircular nets -- Euclidean cases -- Generalized signed inversive distance.
520
$a
This textbook is a comprehensive and yet accessible introduction to non-Euclidean Laguerre geometry, for which there exists no previous systematic presentation in the literature. Moreover, we present new results by demonstrating all essential features of Laguerre geometry on the example of checkerboard incircular nets. Classical (Euclidean) Laguerre geometry studies oriented hyperplanes, oriented hyperspheres, and their oriented contact in Euclidean space. We describe how this can be generalized to arbitrary Cayley-Klein spaces, in particular hyperbolic and elliptic space, and study the corresponding groups of Laguerre transformations. We give an introduction to Lie geometry and describe how these Laguerre geometries can be obtained as subgeometries. As an application of two-dimensional Lie and Laguerre geometry we study the properties of checkerboard incircular nets.
650
0
$a
Laguerre geometry.
$3
908946
650
0
$a
Geometry, Non-Euclidean.
$3
648181
650
0
$a
Nets (Mathematics)
$3
242536
650
1 4
$a
Geometry.
$3
183883
650
2 4
$a
Projective Geometry.
$3
676333
650
2 4
$a
Hyperbolic Geometry.
$3
684054
700
1
$a
Bobenko, Alexander I.
$3
277228
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer Nature eBook
830
0
$a
SpringerBriefs in mathematics.
$3
558795
856
4 0
$u
https://doi.org/10.1007/978-3-030-81847-0
950
$a
Mathematics and Statistics (SpringerNature-11649)
based on 0 review(s)
ALL
電子館藏
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
000000207073
電子館藏
1圖書
電子書
EB QA551 .N812 2021 2021
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Multimedia file
https://doi.org/10.1007/978-3-030-81847-0
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login