Language:
English
繁體中文
Help
圖資館首頁
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Geostatistics for compositional data...
~
Mueller, Ute.
Geostatistics for compositional data with R
Record Type:
Electronic resources : Monograph/item
Title/Author:
Geostatistics for compositional data with Rby Raimon Tolosana-Delgado, Ute Mueller.
Author:
Tolosana-Delgado, Raimon.
other author:
Mueller, Ute.
Published:
Cham :Springer International Publishing :2021.
Description:
xxv, 259 p. :ill., digital ;24 cm.
Contained By:
Springer Nature eBook
Subject:
GeologyStatistical methods.
Online resource:
https://doi.org/10.1007/978-3-030-82568-3
ISBN:
9783030825683$q(electronic bk.)
Geostatistics for compositional data with R
Tolosana-Delgado, Raimon.
Geostatistics for compositional data with R
[electronic resource] /by Raimon Tolosana-Delgado, Ute Mueller. - Cham :Springer International Publishing :2021. - xxv, 259 p. :ill., digital ;24 cm. - Use R!,2197-5744. - Use R!..
1 Introduction -- 2 A review of compositional data analysis -- 3 Exploratory data analysis -- 4 Exploratory spatial analysis -- 5 Variogram Models -- 6 Geostatistical estimation -- 7 Cross-validation -- 8 Multivariate normal score transformation -- 9 Simulation -- 10 Compositional Direct Sampling Simulation -- 11 Evaluation and Postprocessing of Results -- A Matrix decompositions -- B Complete data analysis workflows -- Index.
This book provides a guided approach to the geostatistical modelling of compositional spatial data. These data are data in proportions, percentages or concentrations distributed in space which exhibit spatial correlation. The book can be divided into four blocks. The first block sets the framework and provides some background on compositional data analysis. Block two introduces compositional exploratory tools for both non-spatial and spatial aspects. Block three covers all necessary facets of multivariate spatial prediction for compositional data: variogram modelling, cokriging and validation. Finally, block four details strategies for simulation of compositional data, including transformations to multivariate normality, Gaussian cosimulation, multipoint simulation of compositional data, and common postprocessing techniques, valid for both Gaussian and multipoint methods. All methods are illustrated via applications to two types of data sets: one a large-scale geochemical survey, comprised of a full suite of geochemical variables, and the other from a mining context, where only the elements of greatest importance are considered. R codes are included for all aspects of the methodology, encapsulated in the R package "gmGeostats", available in CRAN.
ISBN: 9783030825683$q(electronic bk.)
Standard No.: 10.1007/978-3-030-82568-3doiSubjects--Topical Terms:
191971
Geology
--Statistical methods.
LC Class. No.: QE33.2.S82 / T65 2021
Dewey Class. No.: 550.727
Geostatistics for compositional data with R
LDR
:02730nmm 22003375a 4500
001
614059
003
DE-He213
005
20211119165159.0
006
m d
007
cr nn 008maaau
008
220627s2021 sz s 0 eng d
020
$a
9783030825683$q(electronic bk.)
020
$a
9783030825676$q(paper)
024
7
$a
10.1007/978-3-030-82568-3
$2
doi
035
$a
978-3-030-82568-3
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QE33.2.S82
$b
T65 2021
072
7
$a
PBT
$2
bicssc
072
7
$a
MAT029000
$2
bisacsh
072
7
$a
PBT
$2
thema
082
0 4
$a
550.727
$2
23
090
$a
QE33.2.S82
$b
T653 2021
100
1
$a
Tolosana-Delgado, Raimon.
$3
715173
245
1 0
$a
Geostatistics for compositional data with R
$h
[electronic resource] /
$c
by Raimon Tolosana-Delgado, Ute Mueller.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2021.
300
$a
xxv, 259 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Use R!,
$x
2197-5744
505
0
$a
1 Introduction -- 2 A review of compositional data analysis -- 3 Exploratory data analysis -- 4 Exploratory spatial analysis -- 5 Variogram Models -- 6 Geostatistical estimation -- 7 Cross-validation -- 8 Multivariate normal score transformation -- 9 Simulation -- 10 Compositional Direct Sampling Simulation -- 11 Evaluation and Postprocessing of Results -- A Matrix decompositions -- B Complete data analysis workflows -- Index.
520
$a
This book provides a guided approach to the geostatistical modelling of compositional spatial data. These data are data in proportions, percentages or concentrations distributed in space which exhibit spatial correlation. The book can be divided into four blocks. The first block sets the framework and provides some background on compositional data analysis. Block two introduces compositional exploratory tools for both non-spatial and spatial aspects. Block three covers all necessary facets of multivariate spatial prediction for compositional data: variogram modelling, cokriging and validation. Finally, block four details strategies for simulation of compositional data, including transformations to multivariate normality, Gaussian cosimulation, multipoint simulation of compositional data, and common postprocessing techniques, valid for both Gaussian and multipoint methods. All methods are illustrated via applications to two types of data sets: one a large-scale geochemical survey, comprised of a full suite of geochemical variables, and the other from a mining context, where only the elements of greatest importance are considered. R codes are included for all aspects of the methodology, encapsulated in the R package "gmGeostats", available in CRAN.
650
0
$a
Geology
$x
Statistical methods.
$3
191971
650
0
$a
R (Computer program language)
$3
210846
650
1 4
$a
Statistical Theory and Methods.
$3
274054
650
2 4
$a
Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences.
$3
348605
650
2 4
$a
Theoretical Ecology/Statistics.
$3
276089
650
2 4
$a
Statistics for Life Sciences, Medicine, Health Sciences.
$3
274067
700
1
$a
Mueller, Ute.
$3
912207
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer Nature eBook
830
0
$a
Use R!.
$3
797602
856
4 0
$u
https://doi.org/10.1007/978-3-030-82568-3
950
$a
Mathematics and Statistics (SpringerNature-11649)
based on 0 review(s)
ALL
電子館藏
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
000000207589
電子館藏
1圖書
電子書
EB QE33.2.S82 T653 2021 2021
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Multimedia file
https://doi.org/10.1007/978-3-030-82568-3
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login