語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Learn data science using Pythona qui...
~
Fouda, Engy.
Learn data science using Pythona quick-start guide /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Learn data science using Pythonby Engy Fouda.
其他題名:
a quick-start guide /
作者:
Fouda, Engy.
出版者:
Berkeley, CA :Apress :2024.
面頁冊數:
xiv, 180 p. :ill., digital ;24 cm.
Contained By:
Springer Nature eBook
標題:
Electronic data processing.
電子資源:
https://doi.org/10.1007/979-8-8688-0935-4
ISBN:
9798868809354$q(electronic bk.)
Learn data science using Pythona quick-start guide /
Fouda, Engy.
Learn data science using Python
a quick-start guide /[electronic resource] :by Engy Fouda. - Berkeley, CA :Apress :2024. - xiv, 180 p. :ill., digital ;24 cm.
Chapter 1: Data Science in Action -- Chapter 2: Getting Started -- Chapter 3: Data Visualization -- Chapter 4: Statistical Analysis and Linear Models -- Chapter 5: Advanced Data Pre-processing and Feature Engineering -- Chapter 6: Preparing Data for Analysis -- Chapter 7: Regression.
Harness the capabilities of Python and gain the expertise need to master data science techniques. This step-by-step book guides you through using Python to achieve tasks related to data cleaning, statistics, and visualization. You'll start by reviewing the foundational aspects of the data science process. This includes an extensive overview of research points and practical applications, such as the insightful analysis of presidential elections. The journey continues by navigating through installation procedures and providing valuable insights into Python, data types, typecasting, and essential libraries like Pandas and NumPy. You'll then delve into the captivating world of data visualization. Concepts such as scatter plots, histograms, and bubble charts come alive through detailed discussions and practical code examples, unraveling the complexities of creating compelling visualizations for enhanced data understanding. Statistical analysis, linear models, and advanced data preprocessing techniques are also discussed before moving on to preparing data for analysis, including renaming variables, variable rearrangement, and conditional statements. Finally, you'll be introduced to regression techniques, demystifying the intricacies of simple and multiple linear regression, as well as logistic regression. You will: Understand installation procedures and valuable insights into Python, data types, typecasting Examine the fundamental statistical analysis required in most data science and analytics reports Clean the most common data set problems Use linear progression for data prediction.
ISBN: 9798868809354$q(electronic bk.)
Standard No.: 10.1007/979-8-8688-0935-4doiSubjects--Topical Terms:
201945
Electronic data processing.
LC Class. No.: QA76
Dewey Class. No.: 004
Learn data science using Pythona quick-start guide /
LDR
:02863nmm a2200325 a 4500
001
672427
003
DE-He213
005
20241115115751.0
006
m d
007
cr nn 008maaau
008
250325s2024 cau s 0 eng d
020
$a
9798868809354$q(electronic bk.)
020
$a
9798868809347$q(paper)
024
7
$a
10.1007/979-8-8688-0935-4
$2
doi
035
$a
979-8-8688-0935-4
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA76
072
7
$a
UN
$2
bicssc
072
7
$a
COM021000
$2
bisacsh
072
7
$a
UN
$2
thema
082
0 4
$a
004
$2
23
090
$a
QA76
$b
.F764 2024
100
1
$a
Fouda, Engy.
$3
877823
245
1 0
$a
Learn data science using Python
$h
[electronic resource] :
$b
a quick-start guide /
$c
by Engy Fouda.
260
$a
Berkeley, CA :
$b
Apress :
$b
Imprint: Apress,
$c
2024.
300
$a
xiv, 180 p. :
$b
ill., digital ;
$c
24 cm.
505
0
$a
Chapter 1: Data Science in Action -- Chapter 2: Getting Started -- Chapter 3: Data Visualization -- Chapter 4: Statistical Analysis and Linear Models -- Chapter 5: Advanced Data Pre-processing and Feature Engineering -- Chapter 6: Preparing Data for Analysis -- Chapter 7: Regression.
520
$a
Harness the capabilities of Python and gain the expertise need to master data science techniques. This step-by-step book guides you through using Python to achieve tasks related to data cleaning, statistics, and visualization. You'll start by reviewing the foundational aspects of the data science process. This includes an extensive overview of research points and practical applications, such as the insightful analysis of presidential elections. The journey continues by navigating through installation procedures and providing valuable insights into Python, data types, typecasting, and essential libraries like Pandas and NumPy. You'll then delve into the captivating world of data visualization. Concepts such as scatter plots, histograms, and bubble charts come alive through detailed discussions and practical code examples, unraveling the complexities of creating compelling visualizations for enhanced data understanding. Statistical analysis, linear models, and advanced data preprocessing techniques are also discussed before moving on to preparing data for analysis, including renaming variables, variable rearrangement, and conditional statements. Finally, you'll be introduced to regression techniques, demystifying the intricacies of simple and multiple linear regression, as well as logistic regression. You will: Understand installation procedures and valuable insights into Python, data types, typecasting Examine the fundamental statistical analysis required in most data science and analytics reports Clean the most common data set problems Use linear progression for data prediction.
650
0
$a
Electronic data processing.
$3
201945
650
0
$a
Python (Computer program language)
$3
215247
650
1 4
$a
Data Science.
$3
913495
650
2 4
$a
Artificial Intelligence.
$3
212515
650
2 4
$a
Machine Learning.
$3
833608
650
2 4
$a
Python.
$3
763308
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer Nature eBook
856
4 0
$u
https://doi.org/10.1007/979-8-8688-0935-4
950
$a
Professional and Applied Computing (SpringerNature-12059)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000249001
電子館藏
1圖書
電子書
EB QA76 .F764 2024 2024
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
https://doi.org/10.1007/979-8-8688-0935-4
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入