Language:
English
繁體中文
Help
圖資館首頁
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Bifurcation without parameters
~
Liebscher, Stefan.
Bifurcation without parameters
Record Type:
Electronic resources : Monograph/item
Title/Author:
Bifurcation without parametersby Stefan Liebscher.
Author:
Liebscher, Stefan.
Published:
Cham :Springer International Publishing :2015.
Description:
xii, 142 p. :ill. (some col.), digital ;24 cm.
Contained By:
Springer eBooks
Subject:
Bifurcation theory.
Online resource:
http://dx.doi.org/10.1007/978-3-319-10777-6
ISBN:
9783319107776 (electronic bk.)
Bifurcation without parameters
Liebscher, Stefan.
Bifurcation without parameters
[electronic resource] /by Stefan Liebscher. - Cham :Springer International Publishing :2015. - xii, 142 p. :ill. (some col.), digital ;24 cm. - Lecture notes in mathematics,21170075-8434 ;. - Lecture notes in mathematics ;2035..
Introduction -- Methods & Concepts -- Cosymmetries -- Codimension One -- Transcritical Bifurcation -- Poincar'e-Andronov-Hopf Bifurcation -- Application: Decoupling in Networks -- Application: Oscillatory Profiles -- Codimension Two -- egenerate Transcritical Bifurcation -- egenerate Andronov-Hopf Bifurcation -- Bogdanov-Takens Bifurcation -- Zero-Hopf Bifurcation -- Double-Hopf Bifurcation -- Application: Cosmological Models -- Application: Planar Fluid Flow -- Beyond Codimension Two -- Codimension-One Manifolds of Equilibria -- Summary & Outlook.
Targeted at mathematicians having at least a basic familiarity with classical bifurcation theory, this monograph provides a systematic classification and analysis of bifurcations without parameters in dynamical systems. Although the methods and concepts are briefly introduced, a prior knowledge of center-manifold reductions and normal-form calculations will help the reader to appreciate the presentation. Bifurcations without parameters occur along manifolds of equilibria, at points where normal hyperbolicity of the manifold is violated. The general theory, illustrated by many applications, aims at a geometric understanding of the local dynamics near the bifurcation points.
ISBN: 9783319107776 (electronic bk.)
Standard No.: 10.1007/978-3-319-10777-6doiSubjects--Topical Terms:
185804
Bifurcation theory.
LC Class. No.: QA380
Dewey Class. No.: 515.392
Bifurcation without parameters
LDR
:02221nmm a2200325 a 4500
001
460739
003
DE-He213
005
20150709150727.0
006
m d
007
cr nn 008maaau
008
151110s2015 gw s 0 eng d
020
$a
9783319107776 (electronic bk.)
020
$a
9783319107769 (paper)
024
7
$a
10.1007/978-3-319-10777-6
$2
doi
035
$a
978-3-319-10777-6
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA380
072
7
$a
PBKJ
$2
bicssc
072
7
$a
MAT007000
$2
bisacsh
082
0 4
$a
515.392
$2
23
090
$a
QA380
$b
.L717 2015
100
1
$a
Liebscher, Stefan.
$3
712360
245
1 0
$a
Bifurcation without parameters
$h
[electronic resource] /
$c
by Stefan Liebscher.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2015.
300
$a
xii, 142 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
490
1
$a
Lecture notes in mathematics,
$x
0075-8434 ;
$v
2117
505
0
$a
Introduction -- Methods & Concepts -- Cosymmetries -- Codimension One -- Transcritical Bifurcation -- Poincar'e-Andronov-Hopf Bifurcation -- Application: Decoupling in Networks -- Application: Oscillatory Profiles -- Codimension Two -- egenerate Transcritical Bifurcation -- egenerate Andronov-Hopf Bifurcation -- Bogdanov-Takens Bifurcation -- Zero-Hopf Bifurcation -- Double-Hopf Bifurcation -- Application: Cosmological Models -- Application: Planar Fluid Flow -- Beyond Codimension Two -- Codimension-One Manifolds of Equilibria -- Summary & Outlook.
520
$a
Targeted at mathematicians having at least a basic familiarity with classical bifurcation theory, this monograph provides a systematic classification and analysis of bifurcations without parameters in dynamical systems. Although the methods and concepts are briefly introduced, a prior knowledge of center-manifold reductions and normal-form calculations will help the reader to appreciate the presentation. Bifurcations without parameters occur along manifolds of equilibria, at points where normal hyperbolicity of the manifold is violated. The general theory, illustrated by many applications, aims at a geometric understanding of the local dynamics near the bifurcation points.
650
0
$a
Bifurcation theory.
$3
185804
650
0
$a
Manifolds (Mathematics)
$3
198996
650
1 4
$a
Mathematics.
$3
184409
650
2 4
$a
Ordinary Differential Equations.
$3
273778
650
2 4
$a
Partial Differential Equations.
$3
274075
650
2 4
$a
Dynamical Systems and Ergodic Theory.
$3
273794
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
830
0
$a
Lecture notes in mathematics ;
$v
2035.
$3
557764
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-10777-6
950
$a
Mathematics and Statistics (Springer-11649)
based on 0 review(s)
ALL
電子館藏
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
000000110246
電子館藏
1圖書
電子書
EB QA380 L717 2015
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Multimedia file
http://dx.doi.org/10.1007/978-3-319-10777-6
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login