語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Nonlinear mode decompositiontheory a...
~
Iatsenko, Dmytro.
Nonlinear mode decompositiontheory and applications /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Nonlinear mode decompositionby Dmytro Iatsenko.
其他題名:
theory and applications /
作者:
Iatsenko, Dmytro.
出版者:
Cham :Springer International Publishing :2015.
面頁冊數:
xxiii, 135 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
標題:
Time-series analysisMathematical models.
電子資源:
http://dx.doi.org/10.1007/978-3-319-20016-3
ISBN:
9783319200163 (electronic bk.)
Nonlinear mode decompositiontheory and applications /
Iatsenko, Dmytro.
Nonlinear mode decomposition
theory and applications /[electronic resource] :by Dmytro Iatsenko. - Cham :Springer International Publishing :2015. - xxiii, 135 p. :ill., digital ;24 cm. - Springer theses,2190-5053. - Springer theses..
Introduction -- Linear Time-Frequency Analysis -- Extraction of Components from the TFR -- Nonlinear Mode Decomposition -- Examples, Applications and Related Issues -- Conclusion.
This work introduces a new method for analysing measured signals: nonlinear mode decomposition, or NMD. It justifies NMD mathematically, demonstrates it in several applications, and explains in detail how to use it in practice. Scientists often need to be able to analyse time series data that include a complex combination of oscillatory modes of differing origin, usually contaminated by random fluctuations or noise. Furthermore, the basic oscillation frequencies of the modes may vary in time; for example, human blood flow manifests at least six characteristic frequencies, all of which wander in time. NMD allows us to separate these components from each other and from the noise, with immediate potential applications in diagnosis and prognosis. MatLab codes for rapid implementation are available from the author. NMD will most likely come to be used in a broad range of applications.
ISBN: 9783319200163 (electronic bk.)
Standard No.: 10.1007/978-3-319-20016-3doiSubjects--Topical Terms:
233807
Time-series analysis
--Mathematical models.
LC Class. No.: QA280
Dewey Class. No.: 519.55
Nonlinear mode decompositiontheory and applications /
LDR
:02045nmm a2200325 a 4500
001
471669
003
DE-He213
005
20160127104217.0
006
m d
007
cr nn 008maaau
008
160223s2015 gw s 0 eng d
020
$a
9783319200163 (electronic bk.)
020
$a
9783319200156 (paper)
024
7
$a
10.1007/978-3-319-20016-3
$2
doi
035
$a
978-3-319-20016-3
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA280
072
7
$a
PHU
$2
bicssc
072
7
$a
SCI040000
$2
bisacsh
082
0 4
$a
519.55
$2
23
090
$a
QA280
$b
.I11 2015
100
1
$a
Iatsenko, Dmytro.
$3
727058
245
1 0
$a
Nonlinear mode decomposition
$h
[electronic resource] :
$b
theory and applications /
$c
by Dmytro Iatsenko.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2015.
300
$a
xxiii, 135 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Springer theses,
$x
2190-5053
505
0
$a
Introduction -- Linear Time-Frequency Analysis -- Extraction of Components from the TFR -- Nonlinear Mode Decomposition -- Examples, Applications and Related Issues -- Conclusion.
520
$a
This work introduces a new method for analysing measured signals: nonlinear mode decomposition, or NMD. It justifies NMD mathematically, demonstrates it in several applications, and explains in detail how to use it in practice. Scientists often need to be able to analyse time series data that include a complex combination of oscillatory modes of differing origin, usually contaminated by random fluctuations or noise. Furthermore, the basic oscillation frequencies of the modes may vary in time; for example, human blood flow manifests at least six characteristic frequencies, all of which wander in time. NMD allows us to separate these components from each other and from the noise, with immediate potential applications in diagnosis and prognosis. MatLab codes for rapid implementation are available from the author. NMD will most likely come to be used in a broad range of applications.
650
0
$a
Time-series analysis
$x
Mathematical models.
$3
233807
650
1 4
$a
Physics.
$3
179414
650
2 4
$a
Numerical and Computational Physics.
$3
384722
650
2 4
$a
Dynamical Systems and Ergodic Theory.
$3
273794
650
2 4
$a
Signal, Image and Speech Processing.
$3
273768
650
2 4
$a
Mathematical Software.
$3
279828
650
2 4
$a
Statistical Physics, Dynamical Systems and Complexity.
$3
376808
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
830
0
$a
Springer theses.
$3
557607
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-20016-3
950
$a
Physics and Astronomy (Springer-11651)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000118314
電子館藏
1圖書
電子書
EB QA280 I11 2015
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
http://dx.doi.org/10.1007/978-3-319-20016-3
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入