Language:
English
繁體中文
Help
圖資館首頁
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Intelligent techniques for data science
~
Akerkar, Rajendra.
Intelligent techniques for data science
Record Type:
Electronic resources : Monograph/item
Title/Author:
Intelligent techniques for data scienceby Rajendra Akerkar, Priti Srinivas Sajja.
Author:
Akerkar, Rajendra.
other author:
Sajja, Priti Srinivas.
Published:
Cham :Springer International Publishing :2016.
Description:
xvi, 272 p. :ill. (some col.), digital ;24 cm.
Contained By:
Springer eBooks
Subject:
Quantitative research.
Online resource:
http://dx.doi.org/10.1007/978-3-319-29206-9
ISBN:
9783319292069$q(electronic bk.)
Intelligent techniques for data science
Akerkar, Rajendra.
Intelligent techniques for data science
[electronic resource] /by Rajendra Akerkar, Priti Srinivas Sajja. - Cham :Springer International Publishing :2016. - xvi, 272 p. :ill. (some col.), digital ;24 cm.
Preface -- Introduction -- Data Analytics -- Basic Learning Algorithms -- Fuzzy Logic -- Artificial Neural Networks -- Genetic Algorithms and Evolutionary Computing -- Other Metaheuristics and Classification Approaches -- Analytics and Big Data -- Data Analytics Using R -- Appendix I: Tools for Data Science -- Appendix II: Tools for Computational Intelligence.
This textbook provides readers with the tools, techniques and cases required to excel with modern artificial intelligence methods. These embrace the family of neural networks, fuzzy systems and evolutionary computing in addition to other fields within machine learning, and will help in identifying, visualizing, classifying and analyzing data to support business decisions. The authors, discuss advantages and drawbacks of different approaches, and present a sound foundation for the reader to design and implement data analytic solutions for applications in an intelligent manner. Intelligent Techniques for Data Science also provides real-world cases of extracting value from data in various domains such as retail, health, aviation, telecommunication and tourism.
ISBN: 9783319292069$q(electronic bk.)
Standard No.: 10.1007/978-3-319-29206-9doiSubjects--Topical Terms:
367894
Quantitative research.
LC Class. No.: Q180.55.Q36
Dewey Class. No.: 001.42
Intelligent techniques for data science
LDR
:02111nmm a2200325 a 4500
001
498208
003
DE-He213
005
20161011124425.0
006
m d
007
cr nn 008maaau
008
170511s2016 gw s 0 eng d
020
$a
9783319292069$q(electronic bk.)
020
$a
9783319292052$q(paper)
024
7
$a
10.1007/978-3-319-29206-9
$2
doi
035
$a
978-3-319-29206-9
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
Q180.55.Q36
072
7
$a
UNF
$2
bicssc
072
7
$a
UYQE
$2
bicssc
072
7
$a
COM021030
$2
bisacsh
082
0 4
$a
001.42
$2
23
090
$a
Q180.55.Q36
$b
A314 2016
100
1
$a
Akerkar, Rajendra.
$3
743409
245
1 0
$a
Intelligent techniques for data science
$h
[electronic resource] /
$c
by Rajendra Akerkar, Priti Srinivas Sajja.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2016.
300
$a
xvi, 272 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
505
0
$a
Preface -- Introduction -- Data Analytics -- Basic Learning Algorithms -- Fuzzy Logic -- Artificial Neural Networks -- Genetic Algorithms and Evolutionary Computing -- Other Metaheuristics and Classification Approaches -- Analytics and Big Data -- Data Analytics Using R -- Appendix I: Tools for Data Science -- Appendix II: Tools for Computational Intelligence.
520
$a
This textbook provides readers with the tools, techniques and cases required to excel with modern artificial intelligence methods. These embrace the family of neural networks, fuzzy systems and evolutionary computing in addition to other fields within machine learning, and will help in identifying, visualizing, classifying and analyzing data to support business decisions. The authors, discuss advantages and drawbacks of different approaches, and present a sound foundation for the reader to design and implement data analytic solutions for applications in an intelligent manner. Intelligent Techniques for Data Science also provides real-world cases of extracting value from data in various domains such as retail, health, aviation, telecommunication and tourism.
650
0
$a
Quantitative research.
$3
367894
650
0
$a
Data mining.
$3
184440
650
0
$a
Big data.
$3
609582
650
1 4
$a
Computer Science.
$3
212513
650
2 4
$a
Data Mining and Knowledge Discovery.
$3
275288
650
2 4
$a
Artificial Intelligence (incl. Robotics)
$3
252959
650
2 4
$a
Knowledge Management.
$3
277143
700
1
$a
Sajja, Priti Srinivas.
$3
761214
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-29206-9
950
$a
Computer Science (Springer-11645)
based on 0 review(s)
ALL
電子館藏
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
000000133643
電子館藏
1圖書
電子書
EB Q180.55.Q36 A314 2016
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Multimedia file
http://dx.doi.org/10.1007/978-3-319-29206-9
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login