語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
An introduction to data analysis usi...
~
James, Simon.
An introduction to data analysis using aggregation functions in R
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
An introduction to data analysis using aggregation functions in Rby Simon James.
作者:
James, Simon.
出版者:
Cham :Springer International Publishing :2016.
面頁冊數:
x, 199 p. :ill. (some col.), digital ;24 cm.
Contained By:
Springer eBooks
標題:
Mathematical statisticsData processing.
電子資源:
http://dx.doi.org/10.1007/978-3-319-46762-7
ISBN:
9783319467627$q(electronic bk.)
An introduction to data analysis using aggregation functions in R
James, Simon.
An introduction to data analysis using aggregation functions in R
[electronic resource] /by Simon James. - Cham :Springer International Publishing :2016. - x, 199 p. :ill. (some col.), digital ;24 cm.
Aggregating data with averaging functions -- Transforming data -- Weighted averaging -- Averaging with interaction -- Fitting aggregation functions to empirical data -- Solutions.
This textbook helps future data analysts comprehend aggregation function theory and methods in an accessible way, focusing on a fundamental understanding of the data and summarization tools. Offering a broad overview of recent trends in aggregation research, it complements any study in statistical or machine learning techniques. Readers will learn how to program key functions in R without obtaining an extensive programming background. Sections of the textbook cover background information and context, aggregating data with averaging functions, power means, and weighted averages including the Borda count. It explains how to transform data using normalization or scaling and standardization, as well as log, polynomial, and rank transforms. The section on averaging with interaction introduces OWS functions and the Choquet integral, simple functions that allow the handling of non-independent inputs. The final chapters examine software analysis with an emphasis on parameter identification rather than technical aspects. This textbook is designed for students studying computer science or business who are interested in tools for summarizing and interpreting data, without requiring a strong mathematical background. It is also suitable for those working on sophisticated data science techniques who seek a better conception of fundamental data aggregation. Solutions to the practice questions are included in the textbook.
ISBN: 9783319467627$q(electronic bk.)
Standard No.: 10.1007/978-3-319-46762-7doiSubjects--Topical Terms:
183916
Mathematical statistics
--Data processing.
LC Class. No.: QA276.45.R3
Dewey Class. No.: 519.50285
An introduction to data analysis using aggregation functions in R
LDR
:02596nmm a2200325 a 4500
001
499769
003
DE-He213
005
20161107123654.0
006
m d
007
cr nn 008maaau
008
170621s2016 gw s 0 eng d
020
$a
9783319467627$q(electronic bk.)
020
$a
9783319467610$q(paper)
024
7
$a
10.1007/978-3-319-46762-7
$2
doi
035
$a
978-3-319-46762-7
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA276.45.R3
072
7
$a
UMA
$2
bicssc
072
7
$a
COM014000
$2
bisacsh
072
7
$a
COM018000
$2
bisacsh
082
0 4
$a
519.50285
$2
23
090
$a
QA276.45.R3
$b
J29 2016
100
1
$a
James, Simon.
$3
744839
245
1 3
$a
An introduction to data analysis using aggregation functions in R
$h
[electronic resource] /
$c
by Simon James.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2016.
300
$a
x, 199 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
505
0
$a
Aggregating data with averaging functions -- Transforming data -- Weighted averaging -- Averaging with interaction -- Fitting aggregation functions to empirical data -- Solutions.
520
$a
This textbook helps future data analysts comprehend aggregation function theory and methods in an accessible way, focusing on a fundamental understanding of the data and summarization tools. Offering a broad overview of recent trends in aggregation research, it complements any study in statistical or machine learning techniques. Readers will learn how to program key functions in R without obtaining an extensive programming background. Sections of the textbook cover background information and context, aggregating data with averaging functions, power means, and weighted averages including the Borda count. It explains how to transform data using normalization or scaling and standardization, as well as log, polynomial, and rank transforms. The section on averaging with interaction introduces OWS functions and the Choquet integral, simple functions that allow the handling of non-independent inputs. The final chapters examine software analysis with an emphasis on parameter identification rather than technical aspects. This textbook is designed for students studying computer science or business who are interested in tools for summarizing and interpreting data, without requiring a strong mathematical background. It is also suitable for those working on sophisticated data science techniques who seek a better conception of fundamental data aggregation. Solutions to the practice questions are included in the textbook.
650
0
$a
Mathematical statistics
$x
Data processing.
$3
183916
650
0
$a
R (Computer program language)
$3
210846
650
1 4
$a
Computer Science.
$3
212513
650
2 4
$a
Computing Methodologies.
$3
274528
650
2 4
$a
Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences.
$3
348605
650
2 4
$a
Applications of Mathematics.
$3
273744
650
2 4
$a
Mathematics of Computing.
$3
273710
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-46762-7
950
$a
Computer Science (Springer-11645)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000134134
電子館藏
1圖書
電子書
EB QA276.45.R3 J29 2016
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
http://dx.doi.org/10.1007/978-3-319-46762-7
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入