Language:
English
繁體中文
Help
圖資館首頁
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
The rise of big spatial data
~
Ivan, Igor.
The rise of big spatial data
Record Type:
Electronic resources : Monograph/item
Title/Author:
The rise of big spatial dataedited by Igor Ivan ... [et al.].
other author:
Ivan, Igor.
Published:
Cham :Springer International Publishing :2017.
Description:
xxvii, 408 p. :ill. (some col.), digital ;24 cm.
Contained By:
Springer eBooks
Subject:
Geographic information systems.
Online resource:
http://dx.doi.org/10.1007/978-3-319-45123-7
ISBN:
9783319451237$q(electronic bk.)
The rise of big spatial data
The rise of big spatial data
[electronic resource] /edited by Igor Ivan ... [et al.]. - Cham :Springer International Publishing :2017. - xxvii, 408 p. :ill. (some col.), digital ;24 cm. - Lecture notes in geoinformation and cartography,1863-2246. - Lecture notes in geoinformation and cartography..
Application of WEB-GIS for Dissemination and 3D Visualization of Larege-Volume LIDAR Data -- Design and Evaluation of WEBGL-BASED Heat Map Visualization for Big Point Data -- Sparse Big Data Problem: A Case Study of Czech Graffiti Crimes -- Surveying of Open Pit Mine Using Low-Cost Aerial Photogrammetry -- Models for Relocation of Emergency Medical Stations -- The Possibilities of Big GIS Data Processing on the Desktop Computers -- Creating Large Size of Data with Apache Hadoop -- Processing LIDAR Data with Apache Hadoop -- Applicability of Support Vector Machines in Landslide Susceptibility Mapping -- Integration of Heterogeneous Data in the Support of the Forest Protection - Structural Concept.
This edited volume gathers the proceedings of the Symposium GIS Ostrava 2016, the Rise of Big Spatial Data, held at the Technical University of Ostrava, Czech Republic, March 16-18, 2016. Combining theoretical papers and applications by authors from around the globe, it summarises the latest research findings in the area of big spatial data and key problems related to its utilisation. Welcome to dawn of the big data era: though it's in sight, it isn't quite here yet. Big spatial data is characterised by three main features: volume beyond the limit of usual geo-processing, velocity higher than that available using conventional processes, and variety, combining more diverse geodata sources than usual. The popular term denotes a situation in which one or more of these key properties reaches a point at which traditional methods for geodata collection, storage, processing, control, analysis, modelling, validation and visualisation fail to provide effective solutions. Entering the era of big spatial data calls for finding solutions that address all "small data" issues that soon create "big data" troubles. Resilience for big spatial data means solving the heterogeneity of spatial data sources (in topics, purpose, completeness, guarantee, licensing, coverage etc.), large volumes (from gigabytes to terabytes and more), undue complexity of geo-applications and systems (i.e. combination of standalone applications with web services, mobile platforms and sensor networks), neglected automation of geodata preparation (i.e. harmonisation, fusion), insufficient control of geodata collection and distribution processes (i.e. scarcity and poor quality of metadata and metadata systems), limited analytical tool capacity (i.e. domination of traditional causal-driven analysis), low visual system performance, inefficient knowledge-discovery techniques (for transformation of vast amounts of information into tiny and essential outputs) and much more. These trends are accelerating as sensors become more ubiquitous around the world.
ISBN: 9783319451237$q(electronic bk.)
Standard No.: 10.1007/978-3-319-45123-7doiSubjects--Topical Terms:
193348
Geographic information systems.
LC Class. No.: G70.212
Dewey Class. No.: 910.285
The rise of big spatial data
LDR
:03799nmm a2200337 a 4500
001
507812
003
DE-He213
005
20161014123533.0
006
m d
007
cr nn 008maaau
008
171031s2017 gw s 0 eng d
020
$a
9783319451237$q(electronic bk.)
020
$a
9783319451220$q(paper)
024
7
$a
10.1007/978-3-319-45123-7
$2
doi
035
$a
978-3-319-45123-7
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
G70.212
072
7
$a
RGW
$2
bicssc
072
7
$a
SCI030000
$2
bisacsh
072
7
$a
TEC036000
$2
bisacsh
082
0 4
$a
910.285
$2
23
090
$a
G70.212
$b
.R595 2017
245
0 4
$a
The rise of big spatial data
$h
[electronic resource] /
$c
edited by Igor Ivan ... [et al.].
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2017.
300
$a
xxvii, 408 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
490
1
$a
Lecture notes in geoinformation and cartography,
$x
1863-2246
505
0
$a
Application of WEB-GIS for Dissemination and 3D Visualization of Larege-Volume LIDAR Data -- Design and Evaluation of WEBGL-BASED Heat Map Visualization for Big Point Data -- Sparse Big Data Problem: A Case Study of Czech Graffiti Crimes -- Surveying of Open Pit Mine Using Low-Cost Aerial Photogrammetry -- Models for Relocation of Emergency Medical Stations -- The Possibilities of Big GIS Data Processing on the Desktop Computers -- Creating Large Size of Data with Apache Hadoop -- Processing LIDAR Data with Apache Hadoop -- Applicability of Support Vector Machines in Landslide Susceptibility Mapping -- Integration of Heterogeneous Data in the Support of the Forest Protection - Structural Concept.
520
$a
This edited volume gathers the proceedings of the Symposium GIS Ostrava 2016, the Rise of Big Spatial Data, held at the Technical University of Ostrava, Czech Republic, March 16-18, 2016. Combining theoretical papers and applications by authors from around the globe, it summarises the latest research findings in the area of big spatial data and key problems related to its utilisation. Welcome to dawn of the big data era: though it's in sight, it isn't quite here yet. Big spatial data is characterised by three main features: volume beyond the limit of usual geo-processing, velocity higher than that available using conventional processes, and variety, combining more diverse geodata sources than usual. The popular term denotes a situation in which one or more of these key properties reaches a point at which traditional methods for geodata collection, storage, processing, control, analysis, modelling, validation and visualisation fail to provide effective solutions. Entering the era of big spatial data calls for finding solutions that address all "small data" issues that soon create "big data" troubles. Resilience for big spatial data means solving the heterogeneity of spatial data sources (in topics, purpose, completeness, guarantee, licensing, coverage etc.), large volumes (from gigabytes to terabytes and more), undue complexity of geo-applications and systems (i.e. combination of standalone applications with web services, mobile platforms and sensor networks), neglected automation of geodata preparation (i.e. harmonisation, fusion), insufficient control of geodata collection and distribution processes (i.e. scarcity and poor quality of metadata and metadata systems), limited analytical tool capacity (i.e. domination of traditional causal-driven analysis), low visual system performance, inefficient knowledge-discovery techniques (for transformation of vast amounts of information into tiny and essential outputs) and much more. These trends are accelerating as sensors become more ubiquitous around the world.
650
0
$a
Geographic information systems.
$3
193348
650
0
$a
Big data.
$3
609582
650
0
$a
Geospatial data.
$3
339520
650
1 4
$a
Geography.
$3
174760
650
2 4
$a
Geographical Information Systems/Cartography.
$3
273999
650
2 4
$a
Data Mining and Knowledge Discovery.
$3
275288
700
1
$a
Ivan, Igor.
$3
711926
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
830
0
$a
Lecture notes in geoinformation and cartography.
$3
555291
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-45123-7
950
$a
Earth and Environmental Science (Springer-11646)
based on 0 review(s)
ALL
電子館藏
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
000000136055
電子館藏
1圖書
電子書
EB G70.212 R595 2017
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Multimedia file
http://dx.doi.org/10.1007/978-3-319-45123-7
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login