Language:
English
繁體中文
Help
圖資館首頁
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Spatial big data scienceclassificati...
~
Jiang, Zhe.
Spatial big data scienceclassification techniques for Earth observation imagery /
Record Type:
Electronic resources : Monograph/item
Title/Author:
Spatial big data scienceby Zhe Jiang, Shashi Shekhar.
Reminder of title:
classification techniques for Earth observation imagery /
Author:
Jiang, Zhe.
other author:
Shekhar, Shashi.
Published:
Cham :Springer International Publishing :2017.
Description:
xv, 131 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
Subject:
Geographic information systems.
Online resource:
http://dx.doi.org/10.1007/978-3-319-60195-3
ISBN:
9783319601953$q(electronic bk.)
Spatial big data scienceclassification techniques for Earth observation imagery /
Jiang, Zhe.
Spatial big data science
classification techniques for Earth observation imagery /[electronic resource] :by Zhe Jiang, Shashi Shekhar. - Cham :Springer International Publishing :2017. - xv, 131 p. :ill., digital ;24 cm.
Part I Overview of Spatial Big Data Analytics -- 1 Spatial Big -- 2 Spatial and Spatiotemporal Big Data science -- Part II Classification of Earth Observation Imagery Big Data -- 3 Overview of Earth Imagery Classification -- 4 Spatial Information Gain Based Spatial Decision Tree -- 5 Focal-Test-Based Spatial Decision Tree -- 6 Spatial Ensemble Learning -- Part III Future Research Needs -- 7 Future Research Needs -- References.
Emerging Spatial Big Data (SBD) has transformative potential in solving many grand societal challenges such as water resource management, food security, disaster response, and transportation. However, significant computational challenges exist in analyzing SBD due to the unique spatial characteristics including spatial autocorrelation, anisotropy, heterogeneity, multiple scales and resolutions which is illustrated in this book. This book also discusses current techniques for, spatial big data science with a particular focus on classification techniques for earth observation imagery big data. Specifically, the authors introduce several recent spatial classification techniques, such as spatial decision trees and spatial ensemble learning. Several potential future research directions are also discussed. This book targets an interdisciplinary audience including computer scientists, practitioners and researchers working in the field of data mining, big data, as well as domain scientists working in earth science (e.g., hydrology, disaster), public safety and public health. Advanced level students in computer science will also find this book useful as a reference.
ISBN: 9783319601953$q(electronic bk.)
Standard No.: 10.1007/978-3-319-60195-3doiSubjects--Topical Terms:
193348
Geographic information systems.
LC Class. No.: G70.212
Dewey Class. No.: 910.285
Spatial big data scienceclassification techniques for Earth observation imagery /
LDR
:02598nmm a2200325 a 4500
001
520141
003
DE-He213
005
20170714103724.0
006
m d
007
cr nn 008maaau
008
180425s2017 gw s 0 eng d
020
$a
9783319601953$q(electronic bk.)
020
$a
9783319601946$q(paper)
024
7
$a
10.1007/978-3-319-60195-3
$2
doi
035
$a
978-3-319-60195-3
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
G70.212
072
7
$a
UNF
$2
bicssc
072
7
$a
UYQE
$2
bicssc
072
7
$a
COM021030
$2
bisacsh
082
0 4
$a
910.285
$2
23
090
$a
G70.212
$b
.J61 2017
100
1
$a
Jiang, Zhe.
$3
789241
245
1 0
$a
Spatial big data science
$h
[electronic resource] :
$b
classification techniques for Earth observation imagery /
$c
by Zhe Jiang, Shashi Shekhar.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2017.
300
$a
xv, 131 p. :
$b
ill., digital ;
$c
24 cm.
505
0
$a
Part I Overview of Spatial Big Data Analytics -- 1 Spatial Big -- 2 Spatial and Spatiotemporal Big Data science -- Part II Classification of Earth Observation Imagery Big Data -- 3 Overview of Earth Imagery Classification -- 4 Spatial Information Gain Based Spatial Decision Tree -- 5 Focal-Test-Based Spatial Decision Tree -- 6 Spatial Ensemble Learning -- Part III Future Research Needs -- 7 Future Research Needs -- References.
520
$a
Emerging Spatial Big Data (SBD) has transformative potential in solving many grand societal challenges such as water resource management, food security, disaster response, and transportation. However, significant computational challenges exist in analyzing SBD due to the unique spatial characteristics including spatial autocorrelation, anisotropy, heterogeneity, multiple scales and resolutions which is illustrated in this book. This book also discusses current techniques for, spatial big data science with a particular focus on classification techniques for earth observation imagery big data. Specifically, the authors introduce several recent spatial classification techniques, such as spatial decision trees and spatial ensemble learning. Several potential future research directions are also discussed. This book targets an interdisciplinary audience including computer scientists, practitioners and researchers working in the field of data mining, big data, as well as domain scientists working in earth science (e.g., hydrology, disaster), public safety and public health. Advanced level students in computer science will also find this book useful as a reference.
650
0
$a
Geographic information systems.
$3
193348
650
0
$a
Big data.
$3
609582
650
1 4
$a
Computer Science.
$3
212513
650
2 4
$a
Data Mining and Knowledge Discovery.
$3
275288
650
2 4
$a
Remote Sensing/Photogrammetry.
$3
274522
650
2 4
$a
Earth System Sciences.
$3
559038
700
1
$a
Shekhar, Shashi.
$3
276373
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-60195-3
950
$a
Computer Science (Springer-11645)
based on 0 review(s)
ALL
電子館藏
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
000000145835
電子館藏
1圖書
電子書
EB G70.212 J61 2017
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Multimedia file
http://dx.doi.org/10.1007/978-3-319-60195-3
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login