Language:
English
繁體中文
Help
圖資館首頁
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
PySpark SQL Recipeswith HiveQL, Data...
~
Mishra, Raju Kumar.
PySpark SQL Recipeswith HiveQL, Dataframe and Graphframes /
Record Type:
Electronic resources : Monograph/item
Title/Author:
PySpark SQL Recipesby Raju Kumar Mishra, Sundar Rajan Raman.
Reminder of title:
with HiveQL, Dataframe and Graphframes /
Author:
Mishra, Raju Kumar.
other author:
Raman, Sundar Rajan.
Published:
Berkeley, CA :Apress :2019.
Description:
xxiv, 323 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
Subject:
Python (Computer program language)
Online resource:
https://doi.org/10.1007/978-1-4842-4335-0
ISBN:
9781484243350$q(electronic bk.)
PySpark SQL Recipeswith HiveQL, Dataframe and Graphframes /
Mishra, Raju Kumar.
PySpark SQL Recipes
with HiveQL, Dataframe and Graphframes /[electronic resource] :by Raju Kumar Mishra, Sundar Rajan Raman. - Berkeley, CA :Apress :2019. - xxiv, 323 p. :ill., digital ;24 cm.
Chapter 1: Introduction to PySparkSQL -- Chapter 2: Some time with Installation -- Chapter 3: IO in PySparkSQL -- Chapter 4 : Operations on PySparkSQL DataFrames -- Chapter 5 : Data Merging and Data Aggregation using PySparkSQL -- Chapter 6: SQL, NoSQL and PySparkSQL -- Chapter 7: Structured Streaming -- Chapter 8 : Optimizing PySparkSQL -- Chapter 9 : GraphFrames.
Carry out data analysis with PySpark SQL, graphframes, and graph data processing using a problem-solution approach. This book provides solutions to problems related to dataframes, data manipulation summarization, and exploratory analysis. You will improve your skills in graph data analysis using graphframes and see how to optimize your PySpark SQL code. PySpark SQL Recipes starts with recipes on creating dataframes from different types of data source, data aggregation and summarization, and exploratory data analysis using PySpark SQL. You'll also discover how to solve problems in graph analysis using graphframes. On completing this book, you'll have ready-made code for all your PySpark SQL tasks, including creating dataframes using data from different file formats as well as from SQL or NoSQL databases. You will: Understand PySpark SQL and its advanced features Use SQL and HiveQL with PySpark SQL Work with structured streaming Optimize PySpark SQL Master graphframes and graph processing.
ISBN: 9781484243350$q(electronic bk.)
Standard No.: 10.1007/978-1-4842-4335-0doiSubjects--Topical Terms:
215247
Python (Computer program language)
LC Class. No.: QA76.73.P98
Dewey Class. No.: 005.133
PySpark SQL Recipeswith HiveQL, Dataframe and Graphframes /
LDR
:02382nmm a2200325 a 4500
001
554896
003
DE-He213
005
20190318184219.0
006
m d
007
cr nn 008maaau
008
191118s2019 cau s 0 eng d
020
$a
9781484243350$q(electronic bk.)
020
$a
9781484243343$q(paper)
024
7
$a
10.1007/978-1-4842-4335-0
$2
doi
035
$a
978-1-4842-4335-0
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA76.73.P98
072
7
$a
UN
$2
bicssc
072
7
$a
COM021000
$2
bisacsh
072
7
$a
UN
$2
thema
082
0 4
$a
005.133
$2
23
090
$a
QA76.73.P98
$b
M678 2019
100
1
$a
Mishra, Raju Kumar.
$3
803938
245
1 0
$a
PySpark SQL Recipes
$h
[electronic resource] :
$b
with HiveQL, Dataframe and Graphframes /
$c
by Raju Kumar Mishra, Sundar Rajan Raman.
260
$a
Berkeley, CA :
$b
Apress :
$b
Imprint: Apress,
$c
2019.
300
$a
xxiv, 323 p. :
$b
ill., digital ;
$c
24 cm.
505
0
$a
Chapter 1: Introduction to PySparkSQL -- Chapter 2: Some time with Installation -- Chapter 3: IO in PySparkSQL -- Chapter 4 : Operations on PySparkSQL DataFrames -- Chapter 5 : Data Merging and Data Aggregation using PySparkSQL -- Chapter 6: SQL, NoSQL and PySparkSQL -- Chapter 7: Structured Streaming -- Chapter 8 : Optimizing PySparkSQL -- Chapter 9 : GraphFrames.
520
$a
Carry out data analysis with PySpark SQL, graphframes, and graph data processing using a problem-solution approach. This book provides solutions to problems related to dataframes, data manipulation summarization, and exploratory analysis. You will improve your skills in graph data analysis using graphframes and see how to optimize your PySpark SQL code. PySpark SQL Recipes starts with recipes on creating dataframes from different types of data source, data aggregation and summarization, and exploratory data analysis using PySpark SQL. You'll also discover how to solve problems in graph analysis using graphframes. On completing this book, you'll have ready-made code for all your PySpark SQL tasks, including creating dataframes using data from different file formats as well as from SQL or NoSQL databases. You will: Understand PySpark SQL and its advanced features Use SQL and HiveQL with PySpark SQL Work with structured streaming Optimize PySpark SQL Master graphframes and graph processing.
650
0
$a
Python (Computer program language)
$3
215247
650
0
$a
SPARK (Computer program language)
$3
803939
650
0
$a
Big data.
$3
609582
650
1 4
$a
Big Data.
$3
760530
650
2 4
$a
Open Source.
$3
758930
650
2 4
$a
Python.
$3
763308
650
2 4
$a
Programming Languages, Compilers, Interpreters.
$3
274102
700
1
$a
Raman, Sundar Rajan.
$3
836826
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
856
4 0
$u
https://doi.org/10.1007/978-1-4842-4335-0
950
$a
Professional and Applied Computing (Springer-12059)
based on 0 review(s)
ALL
電子館藏
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
000000167758
電子館藏
1圖書
電子書
EB QA76.73.P98 M678 2019 2019
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Multimedia file
https://doi.org/10.1007/978-1-4842-4335-0
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login