語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Machine learning using Rwith time se...
~
Ramasubramanian, Karthik.
Machine learning using Rwith time series and industry-based use cases in R /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Machine learning using Rby Karthik Ramasubramanian, Abhishek Singh.
其他題名:
with time series and industry-based use cases in R /
作者:
Ramasubramanian, Karthik.
其他作者:
Singh, Abhishek.
出版者:
Berkeley, CA :Apress :2019.
面頁冊數:
xxiv, 700 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
標題:
Machine learning.
電子資源:
https://doi.org/10.1007/978-1-4842-4215-5
ISBN:
9781484242155$q(electronic bk.)
Machine learning using Rwith time series and industry-based use cases in R /
Ramasubramanian, Karthik.
Machine learning using R
with time series and industry-based use cases in R /[electronic resource] :by Karthik Ramasubramanian, Abhishek Singh. - 2nd ed. - Berkeley, CA :Apress :2019. - xxiv, 700 p. :ill., digital ;24 cm.
Chapter 1: Introduction to Machine Learning -- Chapter 2: Data Exploration and Preparation -- Chapter 3: Sampling and Resampling Techniques -- Chapter 4: Visualization of Data -- Chapter 5: Feature Engineering -- Chapter 6: Machine Learning Models: Theory and Practice -- Chapter 7: Machine Learning Model Evaluation -- Chapter 8: Model Performance Improvement -- Chapter 9: Time Series Modelling -- Chapter 10: Scalable Machine Learning and related technology -- Chapter 11: Introduction to Deep Learning Models using Keras and TensorFlow.
Examine the latest technological advancements in building a scalable machine-learning model with big data using R. This second edition shows you how to work with a machine-learning algorithm and use it to build a ML model from raw data. You will see how to use R programming with TensorFlow, thus avoiding the effort of learning Python if you are only comfortable with R. As in the first edition, the authors have kept the fine balance of theory and application of machine learning through various real-world use-cases which gives you a comprehensive collection of topics in machine learning. New chapters in this edition cover time series models and deep learning. You will: Understand machine learning algorithms using R Master the process of building machine-learning models Cover the theoretical foundations of machine-learning algorithms See industry focused real-world use cases Tackle time series modeling in R Apply deep learning using Keras and TensorFlow in R.
ISBN: 9781484242155$q(electronic bk.)
Standard No.: 10.1007/978-1-4842-4215-5doiSubjects--Topical Terms:
188639
Machine learning.
LC Class. No.: Q325.5 / .R363 2019
Dewey Class. No.: 006.31
Machine learning using Rwith time series and industry-based use cases in R /
LDR
:02570nmm a2200337 a 4500
001
556031
003
DE-He213
005
20190719101634.0
006
m d
007
cr nn 008maaau
008
191121s2019 cau s 0 eng d
020
$a
9781484242155$q(electronic bk.)
020
$a
9781484242148$q(paper)
024
7
$a
10.1007/978-1-4842-4215-5
$2
doi
035
$a
978-1-4842-4215-5
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
Q325.5
$b
.R363 2019
072
7
$a
UYQ
$2
bicssc
072
7
$a
COM004000
$2
bisacsh
072
7
$a
UYQ
$2
thema
082
0 4
$a
006.31
$2
23
090
$a
Q325.5
$b
.R165 2019
100
1
$a
Ramasubramanian, Karthik.
$3
772568
245
1 0
$a
Machine learning using R
$h
[electronic resource] :
$b
with time series and industry-based use cases in R /
$c
by Karthik Ramasubramanian, Abhishek Singh.
250
$a
2nd ed.
260
$a
Berkeley, CA :
$b
Apress :
$b
Imprint: Apress,
$c
2019.
300
$a
xxiv, 700 p. :
$b
ill., digital ;
$c
24 cm.
505
0
$a
Chapter 1: Introduction to Machine Learning -- Chapter 2: Data Exploration and Preparation -- Chapter 3: Sampling and Resampling Techniques -- Chapter 4: Visualization of Data -- Chapter 5: Feature Engineering -- Chapter 6: Machine Learning Models: Theory and Practice -- Chapter 7: Machine Learning Model Evaluation -- Chapter 8: Model Performance Improvement -- Chapter 9: Time Series Modelling -- Chapter 10: Scalable Machine Learning and related technology -- Chapter 11: Introduction to Deep Learning Models using Keras and TensorFlow.
520
$a
Examine the latest technological advancements in building a scalable machine-learning model with big data using R. This second edition shows you how to work with a machine-learning algorithm and use it to build a ML model from raw data. You will see how to use R programming with TensorFlow, thus avoiding the effort of learning Python if you are only comfortable with R. As in the first edition, the authors have kept the fine balance of theory and application of machine learning through various real-world use-cases which gives you a comprehensive collection of topics in machine learning. New chapters in this edition cover time series models and deep learning. You will: Understand machine learning algorithms using R Master the process of building machine-learning models Cover the theoretical foundations of machine-learning algorithms See industry focused real-world use cases Tackle time series modeling in R Apply deep learning using Keras and TensorFlow in R.
650
0
$a
Machine learning.
$3
188639
650
0
$a
R (Computer program language)
$3
210846
650
1 4
$a
Artificial Intelligence.
$3
212515
650
2 4
$a
Open Source.
$3
758930
650
2 4
$a
Programming Languages, Compilers, Interpreters.
$3
274102
700
1
$a
Singh, Abhishek.
$3
276378
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
856
4 0
$u
https://doi.org/10.1007/978-1-4842-4215-5
950
$a
Professional and Applied Computing (Springer-12059)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000168843
電子館藏
1圖書
電子書
EB Q325.5 R165 2019 2019
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
https://doi.org/10.1007/978-1-4842-4215-5
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入