Language:
English
繁體中文
Help
圖資館首頁
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Multidimensional periodic Schrodinge...
~
SpringerLink (Online service)
Multidimensional periodic Schrodinger operatorperturbation theory and applications /
Record Type:
Electronic resources : Monograph/item
Title/Author:
Multidimensional periodic Schrodinger operatorby Oktay Veliev.
Reminder of title:
perturbation theory and applications /
Author:
Veliev, Oktay.
Published:
Cham :Springer International Publishing :2019.
Description:
xii, 326 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
Subject:
Schrodinger operator.
Online resource:
https://doi.org/10.1007/978-3-030-24578-8
ISBN:
9783030245788$q(electronic bk.)
Multidimensional periodic Schrodinger operatorperturbation theory and applications /
Veliev, Oktay.
Multidimensional periodic Schrodinger operator
perturbation theory and applications /[electronic resource] :by Oktay Veliev. - 2nd ed. - Cham :Springer International Publishing :2019. - xii, 326 p. :ill., digital ;24 cm.
Chapter 1 - Preliminary Facts -- Chapter 2- From One-dimensional to Multidimensional -- Chapter 3 - Asymptotic Formulas for the Bloch Eigenvalues and Bloch Functions.-Chapter 4 -Constructive Determination of the Spectral Invariants -- Chapter 5 - Periodic Potential from the Spectral Invariants -- Chapter 6 - Conclusions.
This book describes the direct and inverse problems of the multidimensional Schrodinger operator with a periodic potential, a topic that is especially important in perturbation theory, constructive determination of spectral invariants and finding the periodic potential from the given Bloch eigenvalues. It provides a detailed derivation of the asymptotic formulas for Bloch eigenvalues and Bloch functions in arbitrary dimensions while constructing and estimating the measure of the iso-energetic surfaces in the high-energy regime. Moreover, it presents a unique method proving the validity of the Bethe-Sommerfeld conjecture for arbitrary dimensions and arbitrary lattices. Using the perturbation theory constructed, it determines the spectral invariants of the multidimensional operator from the given Bloch eigenvalues. Some of these invariants are explicitly expressed by the Fourier coefficients of the potential, making it possible to determine the potential constructively using Bloch eigenvalues as input data. Lastly, the book presents an algorithm for the unique determination of the potential. This updated second edition includes an additional chapter that specifically focuses on lower-dimensional cases, providing the basis for the higher-dimensional considerations of the chapters that follow.
ISBN: 9783030245788$q(electronic bk.)
Standard No.: 10.1007/978-3-030-24578-8doiSubjects--Topical Terms:
275658
Schrodinger operator.
LC Class. No.: QC174.17.S3 / V455 2019
Dewey Class. No.: 530.124
Multidimensional periodic Schrodinger operatorperturbation theory and applications /
LDR
:02660nmm a2200337 a 4500
001
564067
003
DE-He213
005
20191213105807.0
006
m d
007
cr nn 008maaau
008
200311s2019 gw s 0 eng d
020
$a
9783030245788$q(electronic bk.)
020
$a
9783030245771$q(paper)
024
7
$a
10.1007/978-3-030-24578-8
$2
doi
035
$a
978-3-030-24578-8
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QC174.17.S3
$b
V455 2019
072
7
$a
PHQ
$2
bicssc
072
7
$a
SCI057000
$2
bisacsh
072
7
$a
PHQ
$2
thema
082
0 4
$a
530.124
$2
23
090
$a
QC174.17.S3
$b
V437 2019
100
1
$a
Veliev, Oktay.
$3
716111
245
1 0
$a
Multidimensional periodic Schrodinger operator
$h
[electronic resource] :
$b
perturbation theory and applications /
$c
by Oktay Veliev.
250
$a
2nd ed.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2019.
300
$a
xii, 326 p. :
$b
ill., digital ;
$c
24 cm.
505
0
$a
Chapter 1 - Preliminary Facts -- Chapter 2- From One-dimensional to Multidimensional -- Chapter 3 - Asymptotic Formulas for the Bloch Eigenvalues and Bloch Functions.-Chapter 4 -Constructive Determination of the Spectral Invariants -- Chapter 5 - Periodic Potential from the Spectral Invariants -- Chapter 6 - Conclusions.
520
$a
This book describes the direct and inverse problems of the multidimensional Schrodinger operator with a periodic potential, a topic that is especially important in perturbation theory, constructive determination of spectral invariants and finding the periodic potential from the given Bloch eigenvalues. It provides a detailed derivation of the asymptotic formulas for Bloch eigenvalues and Bloch functions in arbitrary dimensions while constructing and estimating the measure of the iso-energetic surfaces in the high-energy regime. Moreover, it presents a unique method proving the validity of the Bethe-Sommerfeld conjecture for arbitrary dimensions and arbitrary lattices. Using the perturbation theory constructed, it determines the spectral invariants of the multidimensional operator from the given Bloch eigenvalues. Some of these invariants are explicitly expressed by the Fourier coefficients of the potential, making it possible to determine the potential constructively using Bloch eigenvalues as input data. Lastly, the book presents an algorithm for the unique determination of the potential. This updated second edition includes an additional chapter that specifically focuses on lower-dimensional cases, providing the basis for the higher-dimensional considerations of the chapters that follow.
650
0
$a
Schrodinger operator.
$3
275658
650
0
$a
Perturbation (Mathematics)
$3
190940
650
0
$a
Spectral theory (Mathematics)
$3
182365
650
1 4
$a
Quantum Physics.
$3
275010
650
2 4
$a
Solid State Physics.
$3
376486
650
2 4
$a
Mathematical Physics.
$3
522725
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
856
4 0
$u
https://doi.org/10.1007/978-3-030-24578-8
950
$a
Physics and Astronomy (Springer-11651)
based on 0 review(s)
ALL
電子館藏
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
000000175371
電子館藏
1圖書
電子書
EB QC174.17.S3 V437 2019 2019
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Multimedia file
https://doi.org/10.1007/978-3-030-24578-8
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login