Language:
English
繁體中文
Help
圖資館首頁
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Advanced linear modelingstatistical ...
~
Christensen, Ronald.
Advanced linear modelingstatistical learning and dependent data /
Record Type:
Electronic resources : Monograph/item
Title/Author:
Advanced linear modelingby Ronald Christensen.
Reminder of title:
statistical learning and dependent data /
Author:
Christensen, Ronald.
Published:
Cham :Springer International Publishing :2019.
Description:
xxiii, 608 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
Subject:
Linear models (Statistics)
Online resource:
https://doi.org/10.1007/978-3-030-29164-8
ISBN:
9783030291648$q(electronic bk.)
Advanced linear modelingstatistical learning and dependent data /
Christensen, Ronald.
Advanced linear modeling
statistical learning and dependent data /[electronic resource] :by Ronald Christensen. - 3rd ed. - Cham :Springer International Publishing :2019. - xxiii, 608 p. :ill., digital ;24 cm. - Springer texts in statistics,1431-875X. - Springer texts in statistics..
1. Nonparametric Regression -- 2. Penalized Estimation -- 3. Reproducing Kernel Hilbert Spaces -- 4. Covariance Parameter Estimation -- 5. Mixed Models and Variance Components -- 6. Frequency Analysis of Time Series -- 7. Time Domain Analysis -- 8. Linear Models for Spacial Data: Kriging -- 9. Multivariate Linear Models: General. 10. Multivariate Linear Models: Applications -- 11. Generalized Multivariate Linear Models and Longitudinal Data -- 12. Discrimination and Allocation -- 13. Binary Discrimination and Regression -- 14. Principal Components, Classical Multidimensional Scaling, and Factor Analysis -- A Mathematical Background -- B Best Linear Predictors -- C Residual Maximum Likelihood -- Index -- Author Index.
Now in its third edition, this companion volume to Ronald Christensen's Plane Answers to Complex Questions uses three fundamental concepts from standard linear model theory-best linear prediction, projections, and Mahalanobis distance- to extend standard linear modeling into the realms of Statistical Learning and Dependent Data. This new edition features a wealth of new and revised content. In Statistical Learning it delves into nonparametric regression, penalized estimation (regularization), reproducing kernel Hilbert spaces, the kernel trick, and support vector machines. For Dependent Data it uses linear model theory to examine general linear models, linear mixed models, time series, spatial data, (generalized) multivariate linear models, discrimination, and dimension reduction. While numerous references to Plane Answers are made throughout the volume, Advanced Linear Modeling can be used on its own given a solid background in linear models. Accompanying R code for the analyses is available online.
ISBN: 9783030291648$q(electronic bk.)
Standard No.: 10.1007/978-3-030-29164-8doiSubjects--Topical Terms:
181866
Linear models (Statistics)
LC Class. No.: QA279 / .C47 2019
Dewey Class. No.: 519.5
Advanced linear modelingstatistical learning and dependent data /
LDR
:02835nmm a2200361 a 4500
001
570391
003
DE-He213
005
20191222011106.0
006
m d
007
cr nn 008maaau
008
200819s2019 gw s 0 eng d
020
$a
9783030291648$q(electronic bk.)
020
$a
9783030291631$q(paper)
024
7
$a
10.1007/978-3-030-29164-8
$2
doi
035
$a
978-3-030-29164-8
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA279
$b
.C47 2019
072
7
$a
PBT
$2
bicssc
072
7
$a
MAT029000
$2
bisacsh
072
7
$a
PBT
$2
thema
072
7
$a
PBWL
$2
thema
082
0 4
$a
519.5
$2
23
090
$a
QA279
$b
.C554 2019
100
1
$a
Christensen, Ronald.
$3
466548
245
1 0
$a
Advanced linear modeling
$h
[electronic resource] :
$b
statistical learning and dependent data /
$c
by Ronald Christensen.
250
$a
3rd ed.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2019.
300
$a
xxiii, 608 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Springer texts in statistics,
$x
1431-875X
505
0
$a
1. Nonparametric Regression -- 2. Penalized Estimation -- 3. Reproducing Kernel Hilbert Spaces -- 4. Covariance Parameter Estimation -- 5. Mixed Models and Variance Components -- 6. Frequency Analysis of Time Series -- 7. Time Domain Analysis -- 8. Linear Models for Spacial Data: Kriging -- 9. Multivariate Linear Models: General. 10. Multivariate Linear Models: Applications -- 11. Generalized Multivariate Linear Models and Longitudinal Data -- 12. Discrimination and Allocation -- 13. Binary Discrimination and Regression -- 14. Principal Components, Classical Multidimensional Scaling, and Factor Analysis -- A Mathematical Background -- B Best Linear Predictors -- C Residual Maximum Likelihood -- Index -- Author Index.
520
$a
Now in its third edition, this companion volume to Ronald Christensen's Plane Answers to Complex Questions uses three fundamental concepts from standard linear model theory-best linear prediction, projections, and Mahalanobis distance- to extend standard linear modeling into the realms of Statistical Learning and Dependent Data. This new edition features a wealth of new and revised content. In Statistical Learning it delves into nonparametric regression, penalized estimation (regularization), reproducing kernel Hilbert spaces, the kernel trick, and support vector machines. For Dependent Data it uses linear model theory to examine general linear models, linear mixed models, time series, spatial data, (generalized) multivariate linear models, discrimination, and dimension reduction. While numerous references to Plane Answers are made throughout the volume, Advanced Linear Modeling can be used on its own given a solid background in linear models. Accompanying R code for the analyses is available online.
650
0
$a
Linear models (Statistics)
$3
181866
650
1 4
$a
Probability Theory and Stochastic Processes.
$3
274061
650
2 4
$a
Computational Mathematics and Numerical Analysis.
$3
274020
650
2 4
$a
Statistical Theory and Methods.
$3
274054
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
830
0
$a
Springer texts in statistics.
$3
559235
856
4 0
$u
https://doi.org/10.1007/978-3-030-29164-8
950
$a
Mathematics and Statistics (Springer-11649)
based on 0 review(s)
ALL
電子館藏
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
000000177983
電子館藏
1圖書
電子書
EB QA279 .C554 2019 2019
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Multimedia file
https://doi.org/10.1007/978-3-030-29164-8
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login