語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
High-dimensional covariance matrix e...
~
SpringerLink (Online service)
High-dimensional covariance matrix estimationan introduction to random matrix theory /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
High-dimensional covariance matrix estimationby Aygul Zagidullina.
其他題名:
an introduction to random matrix theory /
作者:
Zagidullina, Aygul.
出版者:
Cham :Springer International Publishing :2021.
面頁冊數:
xiv, 115 p. :ill., digital ;24 cm.
Contained By:
Springer Nature eBook
標題:
Random matrices.
電子資源:
https://doi.org/10.1007/978-3-030-80065-9
ISBN:
9783030800659$q(electronic bk.)
High-dimensional covariance matrix estimationan introduction to random matrix theory /
Zagidullina, Aygul.
High-dimensional covariance matrix estimation
an introduction to random matrix theory /[electronic resource] :by Aygul Zagidullina. - Cham :Springer International Publishing :2021. - xiv, 115 p. :ill., digital ;24 cm. - SpringerBriefs in applied statistics and econometrics,2524-4124. - SpringerBriefs in applied statistics and econometrics..
Foreword -- 1 Introduction -- 2 Traditional Estimators and Standard Asymptotics -- 3 Finite Sample Performance of Traditional Estimators -- 4 Traditional Estimators and High-Dimensional Asymptotics -- 5 Summary and Outlook -- Appendices.
This book presents covariance matrix estimation and related aspects of random matrix theory. It focuses on the sample covariance matrix estimator and provides a holistic description of its properties under two asymptotic regimes: the traditional one, and the high-dimensional regime that better fits the big data context. It draws attention to the deficiencies of standard statistical tools when used in the high-dimensional setting, and introduces the basic concepts and major results related to spectral statistics and random matrix theory under high-dimensional asymptotics in an understandable and reader-friendly way. The aim of this book is to inspire applied statisticians, econometricians, and machine learning practitioners who analyze high-dimensional data to apply the recent developments in their work.
ISBN: 9783030800659$q(electronic bk.)
Standard No.: 10.1007/978-3-030-80065-9doiSubjects--Topical Terms:
240098
Random matrices.
LC Class. No.: QA276.8 / .Z34 2021
Dewey Class. No.: 519.544
High-dimensional covariance matrix estimationan introduction to random matrix theory /
LDR
:02178nmm a2200349 a 4500
001
610760
003
DE-He213
005
20211029074219.0
006
m d
007
cr nn 008maaau
008
220330s2021 sz s 0 eng d
020
$a
9783030800659$q(electronic bk.)
020
$a
9783030800642$q(paper)
024
7
$a
10.1007/978-3-030-80065-9
$2
doi
035
$a
978-3-030-80065-9
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA276.8
$b
.Z34 2021
072
7
$a
PBT
$2
bicssc
072
7
$a
BUS061000
$2
bisacsh
072
7
$a
PBT
$2
thema
072
7
$a
K
$2
thema
082
0 4
$a
519.544
$2
23
090
$a
QA276.8
$b
.Z18 2021
100
1
$a
Zagidullina, Aygul.
$3
908943
245
1 0
$a
High-dimensional covariance matrix estimation
$h
[electronic resource] :
$b
an introduction to random matrix theory /
$c
by Aygul Zagidullina.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2021.
300
$a
xiv, 115 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
SpringerBriefs in applied statistics and econometrics,
$x
2524-4124
505
0
$a
Foreword -- 1 Introduction -- 2 Traditional Estimators and Standard Asymptotics -- 3 Finite Sample Performance of Traditional Estimators -- 4 Traditional Estimators and High-Dimensional Asymptotics -- 5 Summary and Outlook -- Appendices.
520
$a
This book presents covariance matrix estimation and related aspects of random matrix theory. It focuses on the sample covariance matrix estimator and provides a holistic description of its properties under two asymptotic regimes: the traditional one, and the high-dimensional regime that better fits the big data context. It draws attention to the deficiencies of standard statistical tools when used in the high-dimensional setting, and introduces the basic concepts and major results related to spectral statistics and random matrix theory under high-dimensional asymptotics in an understandable and reader-friendly way. The aim of this book is to inspire applied statisticians, econometricians, and machine learning practitioners who analyze high-dimensional data to apply the recent developments in their work.
650
0
$a
Random matrices.
$3
240098
650
0
$a
Asymptotic efficiencies (Statistics)
$3
715176
650
0
$a
Multivariate analysis.
$3
181905
650
1 4
$a
Statistics for Business, Management, Economics, Finance, Insurance.
$3
825914
650
2 4
$a
Econometrics.
$3
182271
650
2 4
$a
Big Data.
$3
760530
650
2 4
$a
Statistical Theory and Methods.
$3
274054
650
2 4
$a
Machine Learning.
$3
833608
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer Nature eBook
830
0
$a
SpringerBriefs in applied statistics and econometrics.
$3
908944
856
4 0
$u
https://doi.org/10.1007/978-3-030-80065-9
950
$a
Mathematics and Statistics (SpringerNature-11649)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000207071
電子館藏
1圖書
電子書
EB QA276.8 .Z18 2021 2021
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
https://doi.org/10.1007/978-3-030-80065-9
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入