語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Practical statistics for data scientists :50+ essential concepts using R and Python /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Practical statistics for data scientists :Peter Bruce, Andrew Bruce, and Peter Gedeck.
其他題名:
50+ essential concepts using R and Python /
作者:
Bruce, Peter C.,
其他作者:
Bruce, Andrew,
面頁冊數:
xvi, 342 pages :illustrations ;24 cm
標題:
Mathematical analysisStatistical methods.
ISBN:
9781492072942
Practical statistics for data scientists :50+ essential concepts using R and Python /
Bruce, Peter C.,1953-
Practical statistics for data scientists :
50+ essential concepts using R and Python /Peter Bruce, Andrew Bruce, and Peter Gedeck. - Second edition. - xvi, 342 pages :illustrations ;24 cm
Includes bibliographical references (pages 327-328) and index.
Exploratory Data Analysis -- Data and Sampling Distributions -- Statistical Experiments and Significance Testing -- Regression and Prediction -- Classification -- Statistical Machine Learning -- Unsupervised Learning.
Statistical methods are a key part of data science, yet few data scientists have formal statistical training. Courses and books on basic statistics rarely cover the topic from a data science perspective. The second edition of this practical guide-now including examples in Python as well as R-explains how to apply various statistical methods to data science, tells you how to avoid their misuse, and gives you advice on what's important and what's not. Many data scientists use statistical methods but lack a deeper statistical perspective. If you're familiar with the R or Python programming languages, and have had some exposure to statistics but want to learn more, this quick reference bridges the gap in an accessible, readable format. With this updated edition, you'll dive into: Exploratory data analysis Data and sampling distributions Statistical experiments and significance testing Regression and prediction Classification Statistical machine learning Unsupervised learning.
ISBN: 9781492072942
LCCN: 2018420845
Nat. Bib. No.: GBC061788bnb
Nat. Bib. Agency Control No.: 019800669UkSubjects--Topical Terms:
919072
Mathematical analysis
--Statistical methods.
LC Class. No.: QA276.4 / .B783 2020
Dewey Class. No.: 001.4/22
Practical statistics for data scientists :50+ essential concepts using R and Python /
LDR
:02516cam 2200385 i 4500
001
637390
003
OCoLC
005
20230920211719.0
008
230921t20202020caua e b 001 0 eng
010
$a
2018420845
015
$a
GBC061788
$2
bnb
016
7
$a
019800669
$2
Uk
019
$a
1125267815
020
$a
9781492072942
$q
(paperback)
020
$a
149207294X
$q
(paperback)
029
1
$a
UKMGB
$b
019800669
035
$a
(OCoLC)1158315601
$z
(OCoLC)1125267815
035
$a
on1158315601
040
$a
UTV
$b
eng
$e
rda
$c
UTV
$d
UTV
$d
AHH
$d
OCLCF
$d
YDXIT
$d
UKMGB
$d
IBI
$d
OCLCO
$d
YDX
$d
JAS
$d
OCL
$d
DLC
$d
OCLCO
$d
OCL
049
$a
NUKM
050
4
$a
QA276.4
$b
.B783 2020
082
0 4
$a
001.4/22
$2
23
100
1
$a
Bruce, Peter C.,
$d
1953-
$3
280846
245
1 0
$a
Practical statistics for data scientists :
$b
50+ essential concepts using R and Python /
$c
Peter Bruce, Andrew Bruce, and Peter Gedeck.
250
$a
Second edition.
264
1
$a
Sebastopol, CA :
$b
O'Reilly Media, Inc.,
$c
2020.
264
4
$c
©2020
300
$a
xvi, 342 pages :
$b
illustrations ;
$c
24 cm
336
$a
text
$b
txt
$2
rdacontent
337
$a
unmediated
$b
n
$2
rdamedia
338
$a
volume
$b
nc
$2
rdacarrier
504
$a
Includes bibliographical references (pages 327-328) and index.
505
0
$a
Exploratory Data Analysis -- Data and Sampling Distributions -- Statistical Experiments and Significance Testing -- Regression and Prediction -- Classification -- Statistical Machine Learning -- Unsupervised Learning.
520
$a
Statistical methods are a key part of data science, yet few data scientists have formal statistical training. Courses and books on basic statistics rarely cover the topic from a data science perspective. The second edition of this practical guide-now including examples in Python as well as R-explains how to apply various statistical methods to data science, tells you how to avoid their misuse, and gives you advice on what's important and what's not. Many data scientists use statistical methods but lack a deeper statistical perspective. If you're familiar with the R or Python programming languages, and have had some exposure to statistics but want to learn more, this quick reference bridges the gap in an accessible, readable format. With this updated edition, you'll dive into: Exploratory data analysis Data and sampling distributions Statistical experiments and significance testing Regression and prediction Classification Statistical machine learning Unsupervised learning.
650
0
$a
Mathematical analysis
$x
Statistical methods.
$3
919072
650
0
$a
Quantitative research
$x
Statistical methods.
$3
902664
650
0
$a
R (Computer program language)
$3
210846
650
0
$a
Python (Computer program language)
$3
215247
650
0
$a
Statistics
$x
Data processing.
$3
183693
650
6
$a
Analyse mathématique
$x
Méthodes statistiques.
$3
945190
650
6
$a
Recherche quantitative
$x
Méthodes statistiques.
$3
945191
650
6
$a
R (Langage de programmation)
$3
943796
650
6
$a
Python (Langage de programmation)
$3
943797
650
6
$a
Statistique
$x
Informatique.
$3
943798
700
1
$a
Bruce, Andrew,
$d
1958-
$3
183872
700
1
$a
Gedeck, Peter,
$e
author.
$3
857101
938
$a
Brodart
$b
BROD
$n
126017700
938
$a
YBP Library Services
$b
YANK
$n
16516168
994
$a
C0
$b
TWNUK
筆 0 讀者評論
全部
西方語文圖書區(四樓)
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
320000742272
西方語文圖書區(四樓)
1圖書
一般圖書
QA276.4 B886 2020
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入