語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Application of Fusion-Based Deep Learning Models to Improve Millimeter Wave Beamforming /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Application of Fusion-Based Deep Learning Models to Improve Millimeter Wave Beamforming /Abishek Subramanian.
作者:
Subramanian, Abishek,
面頁冊數:
1 electronic resource (112 pages)
附註:
Source: Masters Abstracts International, Volume: 85-11.
附註:
Advisors: Oliveira, Aurenice M. Committee members: Dukka, K. C.; Pinar, Anthony.
Contained By:
Masters Abstracts International85-11.
標題:
Electrical engineering.
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=31149417
ISBN:
9798382598437
Application of Fusion-Based Deep Learning Models to Improve Millimeter Wave Beamforming /
Subramanian, Abishek,
Application of Fusion-Based Deep Learning Models to Improve Millimeter Wave Beamforming /
Abishek Subramanian. - 1 electronic resource (112 pages)
Source: Masters Abstracts International, Volume: 85-11.
This study addresses the challenge of selecting millimeter Wave (mmWave) beamforming pairs for vehicle-to-infrastructure (V2I) communication, to mitigate latency in highly dynamic vehicular environments. We investigate the use of out-of-band sensor data as side information to model mmWave ray tracing paths and predicting a subset of top-K optimal beamforming pairs for efficient and low-latency searches. Unimodal-Fusion Deep Learning (F-DL) networks was applied to enhance mmWave beamforming process. We started by first investigating the centralized architecture, and then explored a novel distributed architecture through federated learning to minimize resource and latency overheads. The distributed architecture incorporates two biased client selection strategies: MaxLoss and heuristic Multi-Armed Bandit (MAB). This innovative approach streamlines beam selection, improving scalability, robustness and dynamic adaptability.
English
ISBN: 9798382598437Subjects--Topical Terms:
454503
Electrical engineering.
Subjects--Index Terms:
Beamforming
Application of Fusion-Based Deep Learning Models to Improve Millimeter Wave Beamforming /
LDR
:02419nmm a22004333i 4500
001
676300
005
20250420214338.5
006
m o d
007
cr|nu||||||||
008
250901s2024 miu||||||m |||||||eng d
020
$a
9798382598437
035
$a
(MiAaPQD)AAI31149417
035
$a
AAI31149417
040
$a
MiAaPQD
$b
eng
$c
MiAaPQD
$e
rda
100
1
$a
Subramanian, Abishek,
$e
author.
$3
990059
245
1 0
$a
Application of Fusion-Based Deep Learning Models to Improve Millimeter Wave Beamforming /
$c
Abishek Subramanian.
264
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2024
300
$a
1 electronic resource (112 pages)
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
500
$a
Source: Masters Abstracts International, Volume: 85-11.
500
$a
Advisors: Oliveira, Aurenice M. Committee members: Dukka, K. C.; Pinar, Anthony.
502
$b
M.S.
$c
Michigan Technological University
$d
2024.
520
$a
This study addresses the challenge of selecting millimeter Wave (mmWave) beamforming pairs for vehicle-to-infrastructure (V2I) communication, to mitigate latency in highly dynamic vehicular environments. We investigate the use of out-of-band sensor data as side information to model mmWave ray tracing paths and predicting a subset of top-K optimal beamforming pairs for efficient and low-latency searches. Unimodal-Fusion Deep Learning (F-DL) networks was applied to enhance mmWave beamforming process. We started by first investigating the centralized architecture, and then explored a novel distributed architecture through federated learning to minimize resource and latency overheads. The distributed architecture incorporates two biased client selection strategies: MaxLoss and heuristic Multi-Armed Bandit (MAB). This innovative approach streamlines beam selection, improving scalability, robustness and dynamic adaptability.
546
$a
English
590
$a
School code: 0129
650
4
$a
Electrical engineering.
$3
454503
650
4
$a
Computer engineering.
$3
212944
650
4
$a
Automotive engineering.
$3
739048
653
$a
Beamforming
653
$a
Federated learning
653
$a
Fusion based deep learning
653
$a
Millimeter Wave
653
$a
Vehicle-to-infrastructure
690
$a
0544
690
$a
0464
690
$a
0540
710
2
$a
Michigan Technological University.
$b
Electrical & Computer Engineering.
$e
degree granting institution.
$3
990060
720
1
$a
Oliveira, Aurenice M.
$e
degree supervisor.
773
0
$t
Masters Abstracts International
$g
85-11.
790
$a
0129
791
$a
M.S.
792
$a
2024
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=31149417
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000250780
電子館藏
1圖書
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=31149417
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入